Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Astrobiology ; 20(8): 935-943, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267726

RESUMO

Biology experiments in space seek to increase our understanding of what happens to life beyond Earth and how we can safely send life beyond Earth. Spaceflight is associated with many (mal)adaptations in physiology, including decline in musculoskeletal, cardiovascular, vestibular, and immune systems. Biological experiments in space are inherently challenging to implement. Development of hardware and validation of experimental conditions are critical to ensure the collection of high-quality data. The model organism Caenorhabditis elegans has been studied in space for more than 20 years to better understand spaceflight-induced (patho)physiology, particularly spaceflight-induced muscle decline. These experiments have used a variety of hardware configurations. Despite this, hardware used in the past was not available for our most recent experiment, the Molecular Muscle Experiment (MME). Therefore, we had to design and validate flight hardware for MME. MME provides a contemporary example of many of the challenges faced by researchers conducting C. elegans experiments onboard the International Space Station. Here, we describe the hardware selection and validation, in addition to the ground-based experiment scientific validation testing. These experiences and operational solutions allow others to replicate and/or improve our experimental design on future missions.


Assuntos
Adaptação Fisiológica , Caenorhabditis elegans/fisiologia , Exobiologia/instrumentação , Voo Espacial , Ausência de Peso/efeitos adversos , Animais , Descondicionamento Cardiovascular , Desenho de Equipamento , Exobiologia/métodos , Modelos Animais , Músculos/fisiologia , Simulação de Ausência de Peso/instrumentação , Simulação de Ausência de Peso/métodos
3.
J Vis Commun Med ; 43(2): 85-90, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31858847
4.
Nat Cell Biol ; 19(7): 787-798, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28604678

RESUMO

The endosomal sorting complex required for transport (ESCRT)-III mediates membrane fission in fundamental cellular processes, including cytokinesis. ESCRT-III is thought to form persistent filaments that over time increase their curvature to constrict membranes. Unexpectedly, we found that ESCRT-III at the midbody of human cells rapidly turns over subunits with cytoplasmic pools while gradually forming larger assemblies. ESCRT-III turnover depended on the ATPase VPS4, which accumulated at the midbody simultaneously with ESCRT-III subunits, and was required for assembly of functional ESCRT-III structures. In vitro, the Vps2/Vps24 subunits of ESCRT-III formed side-by-side filaments with Snf7 and inhibited further polymerization, but the growth inhibition was alleviated by the addition of Vps4 and ATP. High-speed atomic force microscopy further revealed highly dynamic arrays of growing and shrinking ESCRT-III spirals in the presence of Vps4. Continuous ESCRT-III remodelling by subunit turnover might facilitate shape adaptions to variable membrane geometries, with broad implications for diverse cellular processes.


Assuntos
Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/enzimologia , Membranas Intracelulares/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/ultraestrutura , Células HeLa , Humanos , Membranas Intracelulares/ultraestrutura , Microscopia de Força Atômica , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , ATPases Vacuolares Próton-Translocadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...