Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 125(3): 327-332, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29107628

RESUMO

The effects of heat treatment (HT), hydrostatic pressure treatment (HPT), and pressurized carbon dioxide treatment (CT) on surface hydrophobicity of B. subtilis 168 spores were investigated. The spore surface hydrophobicity was measured by determining the ratio of hydrophobic spores (RHS) that were partitioned into the n-hexadecane phase from the aqueous spore suspension. The RHS after HT generally increased in a temperature-dependent manner and reached approximately 10% at temperatures above 60°C. The effects of pressurization by HPT and accompanying temperature on increased RHS were complex. The highest RHS after HPT was approximately 17%. Following CT, RHS reached approximately 80% at 5 MPa at 80°C for 30 min. An increased treatment temperature enhanced RHS by CT. The increase in RHS by CT led to the formation of spore clumps and adhesion of spores to hydrophobic surfaces. Acidification of spore suspension to pH 3.2, expected pH during CT, by HCl also increased the adhesion of spores at the similar degree with CT. The spore surface zeta potential distribution was not changed by CT. Furthermore, spores with increased RHS after CT had germination-like phenomena including loss of their refractility and enhanced staining by 4',6-diamidino-2-phenylindole. Physiological germination that was induced by the addition of l-alanine also increased the RHS. From these results, it is clear that CT under heating considerably increases RHS. CT under heating considerably increases RHS. This increase in RHS may be due to acidification or germination-like phenomena during CT.


Assuntos
Bacillus subtilis/fisiologia , Dióxido de Carbono/farmacologia , Esporos Bacterianos , Bacillus subtilis/efeitos dos fármacos , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Pressão Hidrostática , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/fisiologia
2.
Curr Microbiol ; 67(5): 515-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23708427

RESUMO

We studied morphologic changes after sublethal high hydrostatic pressure treatment (HPT) of Escherichia coli K-12 strains in which genes related to the cytoskeleton, cell wall, and cell division had been deleted. Some long filamentous and swelling cells were observed in wild-type bacteria, while some spherical, branched, or collapsed cells were observed in deletion mutants. In particular, ΔzapA and ΔrodZ showed distinguished morphologies. ZapA supports FtsZ, a cytoskeletal protein, forming ring with ZapB. RodZ, a cytoskeletal protein, interacts with MreB, also a cytoskeletal protein, and both factors are necessary for maintaining the rod shape of the cell. These results showed that insufficient formation of FtsZ rings induced cell elongation and that insufficient formation of MreB induced a branched and collapsed cell shape. Therefore, the correct formation of the bacteria cytoskeleton by FtsZ rings and MreB is important for keeping normal cell shape during growth after HPT, and the polymerization of cytoskeletal proteins was a critical target of sublethal HPT. These results indicate that sublethal HPT induces bacterial cell morphologic change and provide important information on the role of genes involved in morphogenesis. Therefore, sublethal HPT may be a good tool for studying the morphogenesis of bacterial cells.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/citologia , Escherichia coli/fisiologia , Pressão Hidrostática , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...