Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 95(5): 755-762, 2014 05.
Artigo em Inglês | MEDLINE | ID: mdl-24436459

RESUMO

CD83 is a marker of mDCs directly related to their lymphostimulatory ability. Some data suggest that it has a central role in the immune system regulation, but how this function is performed remains to be determined. This work aimed to analyze the influence of CD83, present in mDCs, in the modulation of calcium signaling in T lymphocytes. Mo were differentiated into iDCs and activated with TNF-α. iDCs were treated, 4 h before activation, with siRNACD83, to reduce CD83 expression. Purified allogeneic T lymphocytes were labeled with the calcium indicator Fluo-4-AM, and calcium mobilization in the presence of mDCs was analyzed. CD83 knockdown mDCs induced lower calcium signal amplitude in T lymphocytes (29.0±10.0) compared with siRNAscr-treated mDCs (45.5±5.3). In another set of experiments, surface mDC CD83 was blocked with a specific mAb, and again, decreased calcium signaling in T lymphocytes was detected by flow cytometry and microscopy (fluorescence and confocal). In the presence of antibody, the percentage of responding T cells was reduced from 58.14% to 34.29%. As expected, anti-CD83 antibodies also reduced the proliferation of T lymphocytes (as assessed by CFSE dilution). Finally, in the absence of extracellular calcium, CD83 antibodies abrogated T cell signaling induced by allogeneic mDCs, suggesting that the presence of CD83 in mDC membranes enhances T lymphocyte proliferation by boosting calcium release from intracellular stores in these cells.


Assuntos
Antígenos CD/imunologia , Sinalização do Cálcio/imunologia , Membrana Celular/imunologia , Células Dendríticas/imunologia , Imunidade Celular , Imunoglobulinas/imunologia , Glicoproteínas de Membrana/imunologia , Linfócitos T/imunologia , Anticorpos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Antígeno CD83
2.
Front Immunol ; 5: 692, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25646096

RESUMO

Dendritic cells (DCs) have been attracting attention in cancer immunotherapy because of their role in inducing and modulating effective immune responses. Besides the direct contact with other cell types and the secretion of cytokines, it is becoming clear that nanovesicles, such as exosomes (Exo), secreted by DCs also have a role in their function. Conversely, tumor-derived Exo carry antigens and have been used as a source of specific stimulus for the immune response against tumors. At the same time, several works have shown that different cells types incorporate DC-derived Exo (DC-Exo), resulting in modifications of their phenotype and function. Since DC-Exo carry many of the immune function-associated molecules of DCs, their incorporation by tumor cells could turn tumor cells into immunogenic targets. We have, therefore, treated human breast adenocarcinoma cells (SK-BR-3) with DCs-Exo and used these to stimulate previously SK-BR-3-primed CD3(+) T-cells. Sensitized T-cells cultured with DC-Exo-treated tumor cells showed a significantly higher percentage of IFN-γ-secreting cells (as measured by ELISPOT), when compared to the frequency of cells responding to non-DC-Exo-treated cells. These data show that the incorporation of DC-Exo by the tumor cells increased their ability to activate T-cells for a possibly more effective response, thus showing that DC-Exo may become another tool in cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...