Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 458: 140159, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38959804

RESUMO

A selection of formulations with different polymers and concentrations of green tea extract was conducted for application as interleafs in sliced meat products. Films were formulated using cellulose acetate, corn starch, and chitosan with the addition of 1.0, 2.5, and 5.0% green tea extract. Higher antioxidant activity was observed with the 1.0% concentration of green tea extract (P < 0.05), regardless of the formulation, with continuous release of the extract for up to 60 days and average IC50 of 0.09 and 0.31 mg/mL for the corn starch and chitosan active films, respectively. Interleafing the sliced ham resulted in lower lipid oxidation after 60 days of storage (P < 0.05). Starch-based films with green tea extract were effective, significantly reducing lipid oxidation in sliced and interleafed cooked ham, suggesting their potential to extend the shelf life of these refrigerated products.

2.
Chem Biodivers ; 21(7): e202400667, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38935347

RESUMO

Monoacylglycerols are eco-friendly and inexpensive emulsifiers with a range of applications. The traditional synthetic route is not eco-friendly, while enzymatic catalysis offers milder reaction conditions and higher selectivity. However, its application still is limited due to the costs. In this context, endophytic fungi can be source to new biocatalysts with enhanced catalytic activity. Based on this perspective, the aim of this study was perform the synthesis of MAG's through transesterification reactions of solketal and different vinyl esters, using crude and immobilized lipolytic extracts from the endophytic fungi Stemphylium lycopersici, isolated from Humiria balsamifera. The reactions were conducted using 100 mg of biocatalyst, 1 mmol of substrates, 9 : 1 n-heptane/acetone, at 40 °C, 200 rpm for 96 h. In the reactions using the ILE and stearate, laureate and decanoate vinyl esters it was possible to obtain the correspondent products with conversion rates of 52-75 %. Also, according to the structure drivers used in MCM-48 synthesis, different morphologies and conversions rates were observed. Employing [C16MI] Cl, [C14MI] Cl and [C4MI] Cl, the 1-lauroyl- glycerol conversion was 36 %, 79 % and 44 %, respectively. This is the first work involving the immobilization of an endophytic fungi and its utilization as a biocatalyst in the production of MAG's.


Assuntos
Biocatálise , Monoglicerídeos , Monoglicerídeos/química , Monoglicerídeos/metabolismo , Porosidade , Ascomicetos/metabolismo
3.
J Food Sci Technol ; 60(1): 84-91, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618061

RESUMO

An important factor resulted from the ascension of the milk and milk-based by-products production is many effluents directly released into the environment. The main objective of this study was to evaluate the efficiency of the combination of the chemical coagulation, with ferric chloride as a coagulant, and the membrane separation processes (MSP) and reverse osmosis (RO) processes in the treatment of effluents from a powdered milk dairy industry. To evaluate the effectiveness of the integration of these mechanisms, the characterization of the effluents was carried out through Total Nitrogen (Ntotal), Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), color, pH, and turbidity analysis. Regarding the treatments with ferric chloride, the Ntotal removal was up to 55.7% (concentration of 1.2 g L- 1) and the color up to 50% (0.7 g L- 1). For the MSP and RO treatments, the color removal was up to 100% (1st RO), turbidity up to 100% (1st RO), COD up to 98.7% (3rd RO), and TOC up to 96.7% (3rd RO). Finally, the integration of the chemical coagulation and MSP processes was efficient for the treatment of dairy industry wastewater and provides the return of water in appropriate characteristics according to legislation.

4.
Food Sci Technol Int ; 29(3): 255-265, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34939457

RESUMO

There are many blackberry cultivars in Brazil; however, the characteristics and applications of the Cherokee cultivar have not yet been widely studied. For this reason, this research investigated the behaviour of maltodextrin (MD), gum Arabic (GA), and pectin (PEC), as carriers combined in different proportions (20% MD, 15% MD + 5% GA, 15% MD + 5% PEC), on encapsulation of Cherokee blackberry pulp extract obtained by freeze-drying. The results of moisture content (2.73-3.36%), water activity (aw) (0.11-0.15), solubility (52.40-54.11%), hygroscopicity (17.59-21.11%), colour (hue 0.24-0.32), retention of anthocyanins (51.55-60.53%), total phenolic compounds (39.72-70.73 mg GAE/100g), antioxidant activity at 25 mg/mL (77.89-80.02%), IC50 (12.26-14.53), simulated in vitro digestion and morphology were discussed. Concerning morphology, blackberry powders had irregular structures and amorphous structures. Comparatively, the best results were obtained for MD-GA. MD-GA presented the highest content of phenolic compounds (70.73 ± 1.84 mg GAE/100g) and antioxidant activity (80.02%), as well as the lowest IC50 value (12.26). In general, all powders showed an increase in phenolic compounds during in vitro digestion, because of the pH conditions and digestive enzymes present in the simulated digestive fluid. This result shows that the wall material provides protection, since the blackberry rich extract (RE) showed degradation of phenolic compounds in in vitro digestion. In this sense, freeze-drying is a suitable technique for the encapsulation of Cherokee blackberry pulp extract.


Assuntos
Goma Arábica , Rubus , Goma Arábica/química , Antioxidantes/química , Rubus/química , Brasil , Pectinas , Antocianinas/química , Composição de Medicamentos/métodos , Fenóis/química
5.
Appl Biochem Biotechnol ; 194(12): 6270-6286, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35907063

RESUMO

This work presents the immobilization in situ of commercial lipase from Candida antarctica B (CALB) by the sol-gel technique (xerogel) using silica from rice husk ash (RHA) as a source of silicon. It was used the Ionic Liquid (IL) 1-octyl-3-methylimidazolium bromide (C8MI.Br) as additive. The immobilized derivatives were characterized per SEM, XRD, and per method BET. The enzymatic activity of xerogels was evaluated with different tests, these being the reactional thermal analysis, immobilization yield, and operational and storage stability. The XDR showed that the obtained xerogels have halos in the region between 15 and 35° (2θ) what characterizes it as amorphous materials. The SEM analysis of xerogel shows irregular particles with dimensions less than 20 µm. The immobilized presented an esterification activity (EA) with 263.2 and 213.8 U/g, with and without IL, respectively, higher than the free enzyme (169.6 U/g). The immobilized, with and without IL, presented a significant improvement in the activity performance in relation to free enzyme for the three reactional temperatures (40, 60, and 80 °C) evaluated. The operational stability demonstrated that is possible to use xerogel without ionic liquid for 17 recycles and 21 recycles in IL presence. This methodology allows the preparation of new highly active and selective enzyme catalysts using the rice husk ash as a source of silicon, and the ionic liquid [C8MI]Br as additive. Furthermore, the new materials can provide greater viability in the processes, ensuring longer catalyst life.


Assuntos
Líquidos Iônicos , Oryza , Lipase/metabolismo , Enzimas Imobilizadas/metabolismo , Oryza/metabolismo , Silício , Proteínas Fúngicas/metabolismo , Estabilidade Enzimática
6.
Heliyon ; 8(5): e09444, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35620618

RESUMO

In this work, new adsorbent composites from the silica precursor tetraethyl orthosilicate (TEOS) and chitosan have been successfully synthesized, denominated 20%Chi, 30%Chi and 40%Chi. The composites presented enhanced chemical and physical characteristics, with emphasis on the high surface areas between 374.94 m2/g to 886.31 m2/g. The application of the composites in the model system (TY - Tartrazine yellow dye), presented adsorption capacities dependent on the amount of chitosan in the composite (40%Chi > 30%Chi > 20%Chi). However, from the experimental data of the constituent materials, 30%Chi provided the greatest increase in the adsorption capacity in the monolayer, with values of 36%. This demonstrates that the amount of chitosan in the compound alters the arrangement of adsorption sites. The 30%Chi composite presented life cycle superior to 10 reuse cycles.

7.
Appl Biochem Biotechnol ; 194(2): 748-761, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34524635

RESUMO

MCM-48 mesoporous support was synthesized with the ionic solid 1-tetradecyl-3-methylimidazolium chloride ([C14MI]Cl) as a structure-directing agent for in situ immobilization of Candida antarctica B (CALB). The MCM-48[C14MI]Cl support showed characteristics of mesoporous material of interest, with a pore size of 20.30 and 73.41 A for the support without and with the enzyme, respectively. The elongation of the carbonic chain of the ionic solid directly influenced the increase in the specific area and pore volume of the material. In addition, the decrease in the specific area and pore volume for support with the enzyme showed the effectiveness of immobilization in situ. It was possible to obtain the ideal levels for the best activities of esterification of the enzyme with optimization of a mathematical model. The optimized variables were 0.31 g of enzyme and 3.35% of ionic solid with a maximum esterification activity of 392.92 U/g and 688% of yield. The support showed residual activity above 50% when stored under refrigeration for 75 days. At 60 and 80 °C, the enzyme immobilized on the support retained more than 80 and 40% of its residual activity, respectively. In addition, the support presented the possibility of reuse for up to 10 cycles with residual activity of approximately 50%. The support synthesized in the present study presents a great industrial opportunity for the immobilization and use of the CALB enzyme.


Assuntos
Enzimas Imobilizadas
8.
Appl Biochem Biotechnol ; 193(7): 2162-2181, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683550

RESUMO

Sol-gel technique aiming enzymatic immobilization in situ with ionic liquids as additives is poorly studied. In this process, the addition of the enzyme is carried out in the synthesis of the support. The characteristics of ionic liquids, such as low vapor pressure, thermal stability, and non-flammability, make them strong candidates for use as immobilization additives. The objective of the present study was to immobilize the Candida antarctica B lipase by the sol-gel technique using ionic liquids as additives. The optimum points determined for ionic liquids 1-butyl-3-methylimidazolium chloride, 1-octyl-3-methylimidazolium bromide, and 1 hexadecyl-3-methylimimidazolium were 0.30, 0.27, and 0.22 g/mL of enzyme and 1.60, 1.52, and 1.52% of additive, respectively. The amount of enzyme and ionic liquids used in aerogel immobilization was the same as the optimized values in the xerogel immobilization process (for each ionic liquid). Ionic liquids proved to be good additives in the enzymatic immobilization process. Xerogel, regardless of the ionic liquid, presented a greater number of use cycles and better thermal stability compared to aerogel.


Assuntos
Basidiomycota/enzimologia , Proteínas Fúngicas/química , Líquidos Iônicos/química , Lipase/química
9.
Appl Biochem Biotechnol ; 193(4): 1072-1085, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33405010

RESUMO

MCM-41 and MCM-48 with niobium were successfully synthesized using 1-tetradecyl-3-methylimidazolium chloride ([C14MI]Cl) as a structure-directing agent. The best Si/Nb molar ratio was chosen (Si/Nb = 20) and the CALB enzyme was immobilized in situ in the synthesized Nb-MCM. SEM micrographs showed the formation of very regular spherical agglomerates with a diameter between 0.25 and 0.75 µm. The material presented a surface area of 954 and 704 m2/g and a pore volume of 0.321 and 0.286 cm3/g, for Nb-MCM-41 and Nb-MCM-48, respectively. Also, both materials showed a pore size of 2.261 nm. The number of recycles obtained for the CALB enzyme immobilized in Nb-MCM-41 and Nb-MCM-48 was 26 recycles with a residual activity of 49.62% and 16 recycles with a residual activity of 53.01%, respectively. For both materials, enzymatic activity remained stable for 5 months of storage at room temperature and refrigeration. The supports were able to catalyze the esterification reaction at 40, 60, and 80 °C, showing industrial application in reactions that require high temperatures. This methodology allows the preparation of new highly active and selective enzyme catalysts using niobium and [C14MI]Cl. Also, the new materials can provide greater viability in processes, ensuring a longer service life of catalysts. Graphical abstract.


Assuntos
Enzimas Imobilizadas/química , Lipase/química , Nióbio/química , Dióxido de Silício/química , Catálise , Esterificação , Concentração de Íons de Hidrogênio
10.
Biotechnol Rep (Amst) ; 29: e00586, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33489787

RESUMO

In this work was optimized the production of benzyl cinnamate by enzymatic catalysis using the immobilized lipase NS88011 and to evaluate its biological properties. The optimized condition for this system was 1:3 (acid:alcohol) molar ratio, 59 °C, biocatalyst concentration 4.4 mg.mL-1 for 32 h, with a yield of 97.6 %. The enzyme stability study showed that the enzyme remains active and yields above 60 % until the 13th cycle (416 h), presenting a promising half-life. In the determination of the antioxidant activity of the ester, an inhibitory concentration necessary to inhibit 50 % of the free radical 2,2-diphenyl-1-picryl-hydrazyl DPPH (IC50) of 149.8 mg.mL-1 was observed. For acute toxicity against bioindicator Artemia salina, lethal doses (LD50) of 0.07 and 436.7 µg.mL-1 were obtained for the ester and cinnamic acid, showing that benzyl cinnamate had higher toxicity, indicating potential cytotoxic activity against human tumors.

11.
ACS Omega ; 3(11): 16074-16080, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458245

RESUMO

In this work, the use of ultrasound energy for chromium removal from residual tannery leather was investigated. The following parameters were evaluated: complexation temperature (60-90 °C), chromium/complexant molar ratio (1:0 to 1:6), complexation time (30-120 min), washing steps (1-14), washing temperature (25-80 °C), and washing time (1-10 min). For all evaluated conditions, chromium removal was monitored by flame atomic absorption spectrometry. The residual tannery leather after different extraction strategies were characterized using a scanning electron microscopy. For the proposed method, the optimized conditions were: 3 g of residual tannery leather to be treated, 100 mL of extraction solution (chromium/complexant molar ratio of 1:3), at 80 °C and 30 min of sonication. To complete the chromium removal, only five washing cycles (50 mL of water at 50 °C) of 3 min were required. Using these conditions, a chromium removal higher than 98% was achieved. Under the same reaction conditions, the results were compared with mechanical stirring (100 rpm), which allowed observing the significant effects of ultrasound for chromium removal. Comparing to the conventional method, the total time of the process (including extraction and washing steps) was decreased from 150 to 45 min and the water volume for the washing was reduced from 450 to 250 mL. Therefore, the proposed ultrasound-assisted process can be considered as a suitable alternative for chromium removal from residual tannery leather.

12.
Environ Technol ; 38(23): 2928-2938, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28088876

RESUMO

The separation of Jatropha curcas oil from azeotropes of ethyl alcohol-n-hexane and isopropyl alcohol-n-hexane using ceramic membranes with different cutoffs (5, 10 and 20 kDa) is presented. The mass ratios of oil:azeotropes (O:S) studied were 1:3 for feeding pressures of 0.1, 0.2 and 0.3 MPa, and 1:1 for the feeding pressure of 0.1 MPa. Isopropyl alcohol was the best solvent for the membranes conditioning to permeate n-hexane (240 kg/m2 h). In the separation of J. curcas oil and azeotropes of solvents, both membranes showed oil retention and total flux decreases with time. Overall, the lowest decrease in the retentions was reached in the 5 kDa membrane, while the lowest decrease in the total flux was reached in the 20 kDa. In the separation of oil and ethyl alcohol-n-hexane azeotrope, the best retention at 60 min of the process was equal to 17.3 wt% in the 20 kDa membrane at 0.3 MPa and O:S ratio equalled to 1:3. In this condition, the total permeate flux was 17.5 kg/m2 h. Different retentions and permeabilities are provided when changing the O:S ratio, the feeding pressure and the molecular weight cutoff of membranes.


Assuntos
Cerâmica/química , Fracionamento Químico/métodos , Jatropha/química , Óleos de Plantas/isolamento & purificação , Solventes/química , 2-Propanol/química , Hexanos/química , Membranas Artificiais , Óleos de Plantas/química
13.
Bioprocess Biosyst Eng ; 38(8): 1569-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25894295

RESUMO

The hybrid alginate/gelatin/calcium oxalate (AGOCa) support was successfully synthesized through the biomimetic mineralization method for immobilization in situ of a pectinolytic extract from Aspergillus niger ATCC 9642 via entrapment technique. The efficiency of immobilization reached 72.7%. Sodium oxalate buffer (100 mM, pH 5.5) was selected as adjuvant of the immobilization process by allowing the formation of a calcified shell around the calcium alginate capsule, significantly increasing the stability to storage, thermal and recycling of the enzymatic immobilized pectinolytic extract. The pH and temperature for maximum activity were from 5.0 to 6.0 and 60 to 80 °C, respectively. The new hybrid support can be a potential alternative to obtain immobilized pectinases with properties for advantageous industrial applications.


Assuntos
Alginatos/química , Aspergillus niger/enzimologia , Materiais Biomiméticos/síntese química , Oxalato de Cálcio/química , Proteínas Fúngicas/química , Gelatina/química , Poligalacturonase/química , Materiais Biomiméticos/química , Enzimas Imobilizadas/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...