Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504996

RESUMO

Biogas is a valuable renewable energy source that can help mitigate greenhouse emissions. The dry reforming of methane (DRM) offers an alternative hydrogen production route with the advantage of using two main greenhouse gases, CO2 and CH4. However, its real application is limited mainly due to catalyst deactivation by coke formation and the reverse water gas shift (RWGS) reaction that can occur in parallel. Additionally, the typical dry reforming temperature range is 700-950 °C, often leading to catalyst sintering. A low-temperature DRM process could be in principle achieved using a membrane reactor (MR) to shift the dry reforming equilibrium forward and inhibit the RWGS reaction. In this work, biogas reforming was investigated through the simulation of MRs with thin (3.4 µm) and thick (50 µm) Pd-Ag membranes. The effects of the feed temperature (from 450 to 550 °C), pressure (in the range of 2-20 bar), and biogas composition (CH4/CO2 molar ratios from 1/1 to 7/3) were studied for the thin membrane through the calculation and comparison of several process indicators, namely CH4 and CO2 conversions, H2 yield, H2/CO ratio and H2 recovery. Estimation of the CO-inhibiting effect on the H2 molar flux through the membrane was assessed for a thick membrane. Simulations for a thin Pd-Ag MR show that (i) CO2 and CH4 conversions and H2 yield increase with the feed temperature; (ii) H2 yield and average rate of coke formation increase for higher pressures; and (iii) increasing CH4/CO2 feed molar ratio leads to higher H2/CO ratios, but lower H2 yields. Moreover, simulations for a thick Pd-Ag MR showed that the average H2 molar flux decreases due to the CO inhibiting effect (ca. 15%) in the temperature range considered. In conclusion, this work showed that for the considered simulation conditions, the use of an MR leads to the inhibition of the RWGS reaction and improves H2 yield, but coke formation and CO inhibition on H2 permeation may pose limitations on its practical feasibility, for which proper strategies must be explored.

2.
ACS Sustain Chem Eng ; 10(24): 7833-7851, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590651

RESUMO

This work proposes an innovative method for the simultaneous upgrading of biogas streams and valorization of the separated CO2, through its conversion to renewable methane. To this end, two sorptive reactors were filled with a layered bed containing a CO2 sorbent (K-promoted hydrotalcite) and a methanation catalyst (Ru/Al2O3). The continuous cyclic operation of the parallel sorptive reactors was carried out by alternately feeding a biogas stream (CO2/CH4 mixture) or H2. The CO2/CH4 mixture is fed to the sorptive reactor during the sorption stage, with CO2 being captured by the sorbent and CH4 exiting as a purified stream (i.e., as biomethane). During the reactive regeneration stage, the inlet stream is switched to pure H2, which reacts with the previously captured CO2 at the methanation catalyst active sites thus producing additional methane. For continuous operation, the two sorptive reactors were operated 180° out of phase and cyclic steady-state could be reached after ca. five cycles. The performance of the cyclic sorptive-reactive unit was assessed through a parametric study to evaluate the influence of different operating conditions, namely, the inlet flow rate and CO2 content during the sorption stage, the hydrogen inlet flow rate during the reactive regeneration stage, the stage duration, and temperature. The inclusion of an inert purge after the reactive regeneration stage was also tested. The performance of the unit was compared to the case of direct hydrogenation of biogas, and conclusions were drawn regarding future optimization, with special attention being given to CH4 productivity and purity. During the parametric study, a compromise between these process indicators, i.e., a productivity of 1.63 molCH4 kgcat -1 h-1 with 70.3% of CH4 purity, was obtained at 350 °C. However, biomethane purities above 80% were easily achieved, though at the expense of methane productivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...