Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci Biotechnol ; 14(1): 156, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129915

RESUMO

BACKGROUND: This study investigated the effects of inorganic and organic minerals on physiological responses, oxidative stress reduction, and rumen microbiota in Holstein bull calves (123.81 ± 9.76 kg; 5 months old) during short-term heat stress (HS) and recovery periods. Eight Holstein calves were randomly assigned to four treatment groups: no mineral supplementation (Con), inorganic minerals (IM), organic minerals (OM), and high-concentration organic minerals (HOM) and two thermal environments (HS and recovery) using 4 × 2 factorial arrangement in a crossover design of four periods of 35 d. Calves were maintained in a temperature-controlled barn. The experimental period consisted of 14 d of HS, 14 d of recovery condititon, and a 7-d washing period. RESULTS: Body temperature and respiration rate were higher in HS than in the recovery conditions (P < 0.05). Selenium concentration in serum was high in the HOM-supplemented calves in both HS (90.38 µg/dL) and recovery periods (102.00 µg/dL) (P < 0.05). During the HS period, the serum cortisol was 20.26 ng/mL in the HOM group, which was 5.60 ng/mL lower than in the control group (P < 0.05). The total antioxidant status was the highest in the OM group (2.71 mmol Trolox equivalent/L), followed by the HOM group during HS, whereas it was highest in the HOM group (2.58 mmol Trolox equivalent/L) during the recovery period (P < 0.05). Plasma malondialdehyde and HSP70 levels were decreased by HOM supplementation during the HS and recovery periods, whereas SOD and GPX levels were not significantly affected (P > 0.05). The principal coordinate analysis represented that the overall rumen microbiota was not influenced by mineral supplementation; however, temperature-induced microbial structure shifts were indicated (PERMANOVA: P < 0.05). At the phylum level, Firmicutes and Actinobacteria decreased, whereas Fibrobacteres, Spirochaetes, and Tenericutes increased (P < 0.05), under HS conditions. The genus Treponema increased under HS conditions, while Christensenella was higher in recovery conditions (P < 0.05). CONCLUSION: HOM supplementation during HS reduced cortisol concentrations and increased total antioxidant status in Holstein bull calves, suggesting that high organic mineral supplementation may alleviate the adverse effects of HS.

2.
J Anim Sci Technol ; 65(5): 951-970, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37969342

RESUMO

This study utilized Italian ryegrass silage (IRGS) - based total mixed ration (TMR) as feedstuff and evaluated its effects on rumen fermentation, growth performance, blood parameters, and bacterial community in growing Hanwoo heifers. Twenty-seven Hanwoo heifers (body weight [BW], 225.11 ± 10.57 kg) were randomly allocated to three experimental diets. Heifers were fed 1 of 3 treatments as follows: TMR with oat, timothy, and alfalfa hay (CON), TMR with 19% of IRGS (L-IRGS), and TMR with 36% of IRGS (H-IRGS). Feeding high levels of IRGS (H-IRGS) and CON TMR to heifers resulted in a greater molar proportion of propionate in the rumen. The impact of different TMR diets on the BW, average daily gain, dry matter intake, and feed conversion ratio of Hanwoo heifers during the growing period did not differ (p > 0.05). Furthermore, the blood metabolites, total protein, albumin, aspartate aminotransferase, glucose, and total cholesterol of the heifers were not affected by the different TMR diets (p > 0.05). In terms of rumen bacterial community composition, 264 operational taxonomic units (OTUs) were observed across the three TMR diets with 240, 239, and 220 OTUs in CON, L-IRGS, and H-IRGS, respectively. IRGS-based diets increased the relative abundances of genera belonging to phylum Bacteroidetes but decreased the abundances of genus belonging to phylum Firmicutes compared with the control. Data showed that Bacteroidetes was the most dominant phylum, while Prevotella ruminicola was the dominant species across the three TMR groups. The relative abundance of Ruminococcus bromii in the rumen increased in heifers fed with high inclusion of IRGS in the TMR (H-IRGS TMR). The relative abundance of R. bromii in the rumen significantly increased when heifers were fed H-IRGS TMR while P. ruminicola increased in both L-IRGS and H-IRGS TMR groups. Results from the current study demonstrate that the inclusion of IRGS in the TMR is comparable with the TMR containing high-quality forage (CON). Thus, a high level of IRGS can be used as a replacement forage ingredient in TMR feeding and had a beneficial effect of possibly modulating the rumen bacterial community toward mainly propionate-producing microorganisms.

3.
Vet Sci ; 10(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624283

RESUMO

The objective of the present study was to identify changes in fecal microbiota and predict the functional features of healthy calves and those infected with rotavirus over time. Six Holstein calves (average body weight 43.63 ± 1.19 kg, age-matched within 5-7 d) were randomly selected and distributed into two groups which contained three calves each. Fecal samples were taken 3 days before inoculation and on days 1 and 7 post-inoculation. The 16S rRNA gene amplicon sequencing was performed. Bacterial diversity tended to decrease in the rota group, as indicated by the alpha (evenness, p = 0.074 and Shannon, p = 0.055) and beta (Bray-Curtis dissimilarity, p = 0.099) diversity at 1 day post-inoculation. Differences in the bacterial taxa between healthy and rota-infected calves were detected using a linear discriminant analysis effect size (LDA > 2.0, p < 0.05). Rota calves had a higher abundance of certain bacterial taxa, such as Enterococcus, Streptococcus, and Escherichia-Shigella, and a lower abundance of bacteria that contribute to the production of short-chain fatty acids, such as Alistipes, Faecalibacterium, Pseudoflavonifractor, Subdoligranulum, Alloprevotella, Butyricicoccus, and Ruminococcus, compared to the healthy calves. The observed changes in the fecal microbiota of the rota-infected group compared to the healthy group indicated potential dysbiosis. This was further supported by significant differences in the predicted functional metagenomic profiles of these microbial communities. We suggest that calves infected with bovine rotavirus had bacterial dysbiosis, which was characterized by lower diversity and fewer observed genera than the fecal microbiota of healthy calves.

4.
Anim Biosci ; 36(9): 1453-1464, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37402447

RESUMO

OBJECTIVE: This study investigated the changes in bacterial communities within decomposing swine microcosms, comparing soil with or without intact microbial communities, and under aerobic and anaerobic conditions. METHODS: The experimental microcosms consisted of four conditions: UA, unsterilized soil-aerobic condition; SA, sterilized soil-aerobic condition; UAn, unsterilized soil-anaerobic condition; and San, sterilized soil-anaerobic condition. The microcosms were prepared by mixing 112.5 g of soil and 37.5 g of ground carcass, which were then placed in sterile containers. The carcass-soil mixture was sampled at day 0, 5, 10, 30, and 60 of decomposition, and the bacterial communities that formed during carcass decomposition were assessed using Illumina MiSeq sequencing of the 16S rRNA gene. RESULTS: A total of 1,687 amplicon sequence variants representing 22 phyla and 805 genera were identified in the microcosms. The Chao1 and Shannon diversity indices varied in between microcosms at each period (p<0.05). Metagenomic analysis showed variation in the taxa composition across the burial microcosms during decomposition, with Firmicutes being the dominant phylum, followed by Proteobacteria. At the genus level, Bacillus and Clostridium were the main genera within Firmicutes. Functional prediction revealed that the most abundant Kyoto encyclopedia of genes and genomes metabolic functions were carbohydrate and amino acid metabolisms. CONCLUSION: This study demonstrated a higher bacteria diversity in UA and UAn microcosms than in SA and SAn microcosms. In addition, the taxonomic composition of the microbial community also exhibited changes, highlighting the impact of soil sterilization and oxygen on carcass decomposition. Furthermore, this study provided insights into the microbial communities associated with decomposing swine carcasses in microcosm.

5.
Animals (Basel) ; 11(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34679958

RESUMO

The impact of soil with an intact microbial community and oxygen availability on moisture content, soil pH, and bacterial communities during decomposition of poultry carcasses was investigated. Poultry carcasses were decomposed in soil with or without a microbial community, under aerobic or anaerobic conditions. The samples collected in each microcosm burial set-up were analyzed by targeted 16S rRNA amplicon sequencing and Amplicon sequence variants (ASV) method. Our results showed that moisture was high in the burial set-ups under anaerobic conditions and pH was high in the burial set-ups under aerobic conditions. Meanwhile, the Chao1 and Shannon index significantly differed between the different burial set-ups and across different time points. In addition, bacterial taxa composition during the early period of decomposition differed from that of the late period. A total of 23 phyla, 901 genera, and 1992 species were identified. Firmicutes was the most dominant phyla in all burial set-ups throughout the decomposition. At day 60, Pseudogracilibacillus was dominant in the burial set-ups under aerobic conditions, while Lentibacillus dominated in the burial set-ups under anaerobic conditions. This study demonstrated that the soil microbial community and availability of oxygen significantly affected the changes in moisture content, pH, and bacterial composition during the decomposition process.

6.
Anim Biosci ; 34(4): 642-651, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32898945

RESUMO

OBJECTIVE: This study aimed to determine the effects of different roughages in total mixed ration (TMR) inoculated with or without coculture of Lactobacillus acidophilus (L. acidophilus) and Bacillus subtilis (B. subtilis) on in vitro rumen fermentation and microbial population. METHODS: Three TMRs formulations composed of different forages were used and each TMR was grouped into two treatments: non-fermented TMR and fermented TMR (F-TMR) (inoculated with coculture of L. acidophilus and B. subtilis). After fermentation, the fermentation, chemical and microbial profile of the TMRs were determined. The treatments were used for in vitro rumen fermentation to determine total gas production, pH, ammonianitrogen (NH3-N), and volatile fatty acids (VFA). Microbial populations were determined by quantitative real-time polymerase chain reaction (PCR). All data were analyzed as a 3×2 factorial arrangement design using the MIXED procedure of Statistical Analysis Systems. RESULTS: Changes in the fermentation (pH, lactate, acetate, propionate, and NH3-N) and chemical composition (moisture, crude protein, crude fiber, and ash) were observed. For in vitro rumen fermentation, lower rumen pH, higher acetate, propionate, and total VFA content were observed in the F-TMR group after 24 h incubation (p<0.05). F-TMR group had higher acetate concentration compared with the non-fermented group. Total VFA was highest (p<0.05) in F-TMR containing combined forage of domestic and imported source (F-CF) and F-TMR containing Italian ryegrass silage and corn silage (F-IRS-CS) than that of TMR diet containing oat, timothy, and alfalfa hay. The microbial population was not affected by the different TMR diets. CONCLUSION: The use of Italian ryegrass silage and corn silage, as well as the inoculation of coculture of L. acidophilus and B. subtilis, in the TMR caused changes in the pH, lactate and acetate concentrations, and chemical composition of experimental diets. In addition, F-TMR composed with Italian ryegrass silage and corn silage altered ruminal pH and VFA concentrations during in vitro rumen fermentation experiment.

7.
Nutrients ; 12(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423176

RESUMO

This study examined the effects of defatted mealworm fermentation extract (MWF) on alcoholic liver injury in rats. The rats were fed either a Lieber-DeCarli control (Con) or alcohol liquid diet (EtOH). The alcohol-fed rats were administered MWF (50, 100, or 200 mg/kg/day) and silymarin (200 mg/kg/day) orally for eight weeks. MWF prevented alcohol-induced hepatocellular damage by decreasing their serum aspartate transaminase, alanine transaminase, and gamma-glutamyl transpeptidase levels significantly compared to the EtOH group. MWF effectively reduced the relative hepatic weight, lipid contents, and fat deposition, along with the down-regulation of transcriptional factors and genes involved in lipogenesis compared to the EtOH group. It also enhanced the antioxidant defense system by elevating the glutathione level and glutathione reductase activity. MWF attenuated the alcohol-induced inflammatory response by down-regulating hepatic inflammation-associated proteins expression, such as phosphorylated-inhibitor of nuclear factor-kappa B-alpha and tumor necrosis factor-alpha, in chronic alcohol-fed rats. Furthermore, sequencing analysis in the colonic microbiota showed that MWF tended to increase Lactobacillus johnsonii reduced by chronic alcohol consumption. These findings suggest that MWF can attenuate alcoholic liver injury by regulating the lipogenic and inflammatory pathway and antioxidant defense system, as well as by partially altering the microbial composition.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Mediadores da Inflamação/sangue , Hepatopatias Alcoólicas/tratamento farmacológico , Extratos Vegetais/farmacologia , Tenebrio , Alanina Transaminase/sangue , Animais , Antioxidantes , Aspartato Aminotransferases/sangue , Modelos Animais de Doenças , Etanol/efeitos adversos , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Inflamação , Larva , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatias Alcoólicas/sangue , Masculino , Ratos , Ratos Sprague-Dawley
8.
J Microbiol Biotechnol ; 29(7): 1083-1095, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31216841

RESUMO

Butyrate is known to play a significant role in energy metabolism and regulating genomic activities that influence rumen nutrition utilization and function. Thus, this study investigated the effects of an isolated butyrate-producing bacteria, Clostridium saccharobutylicum, in rumen butyrate production, fermentation parameters and microbial population in Holstein-Friesian cow. An isolated butyrate-producing bacterium from the ruminal fluid of a Holstein-Friesian cow was identified and characterized as Clostridium saccharobutylicum RNAL841125 using 16S rRNA gene sequencing and phylogenetic analyses. The bacterium was evaluated on its effects as supplement on in vitro rumen fermentation and microbial population. Supplementation with 106 CFU/ml Clostridium saccharobutylicum increased (p < 0.05) microbial crude protein, butyrate and total volatile fatty acids concentration but had no significant effect on NH3-N at 24 h incubation. Butyrate and total VFA concentrations were higher (p < 0.05) in supplementation with 106 CFU/ml Clostridium saccharobutylicum compared with control, with no differences observed for total gas production, NH3-N and propionate concentration. However, as the inclusion rate (CFU/ml) of C. saccharobutylicum was increased, reduction of rumen fermentation values was observed. Furthermore, butyrate-producing bacteria and Fibrobacter succinogenes population in the rumen increased in response with supplementation of C. saccharobutylicum, while no differences in the population in total bacteria, protozoa and fungi were observed among treatments. Overall, our study suggests that supplementation with 106 CFU/ml C. saccharobutylicum has the potential to improve ruminal fermentation through increased concentrations of butyrate and total volatile fatty acid, and enhanced population of butyrate-producing bacteria and cellulolytic bacteria F. succinogenes.


Assuntos
Butiratos/metabolismo , Clostridium/fisiologia , Suplementos Nutricionais , Fermentação , Microbioma Gastrointestinal , Rúmen/microbiologia , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bovinos/metabolismo , Bovinos/microbiologia , Clostridium/classificação , Clostridium/genética , Clostridium/metabolismo , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Filogenia , RNA Ribossômico 16S/genética
9.
Anim Biotechnol ; 30(2): 146-150, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29580199

RESUMO

Salmonella infection can cause septicemia, acute or chronic enteritis and wasting in weaned pigs, but may occur in other age groups. The bactericidal/permeability-increasing protein (BPI) gene plays an important role in the natural defense of the host and is found to be associated with resistance/susceptibility to Salmonella infection and identified as a candidate gene for disease resistance breeding in pig. This study was conducted to screen the resistance and/or susceptibility of pigs to Salmonella infection, to determine the genotype and evaluate presence of resistant allele of the BPI gene in population of pigs, and to establish genetic data for pig breeders for the improvement of Philippine pig industry. In this study, 389 blood samples from different pig breeds were collected from pig breeder farms in the Philippines. Genomic DNA was extracted from these samples and genotyping was done by PCR-RFLP analysis using AvaII restriction enzyme. Out of 389 pigs, the genotypic frequency showed that 98.4, 1.3, and 0.3% pigs are resistant (GG), heterozygous type (AG), and susceptible (AA), respectively. The application of BPI gene as marker for disease resistance will provide information to the pig industry to implement strategies for the identification of Salmonella infection-resistant pigs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Sanguíneas/genética , Resistência à Doença/genética , Salmonelose Animal/imunologia , Salmonella/fisiologia , Sepse/veterinária , Alelos , Animais , Anti-Infecciosos , Cruzamento , Marcadores Genéticos/genética , Genótipo , Reação em Cadeia da Polimerase/veterinária , Polimorfismo de Fragmento de Restrição , Salmonelose Animal/microbiologia , Sepse/imunologia , Sepse/microbiologia , Suínos
10.
Artigo em Inglês | MEDLINE | ID: mdl-30502829

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease and a possible cause of Crohn's disease in humans. A total of 70 blood and fecal samples were collected from water buffaloes in selected municipalities of Nueva Ecija for ELISA and qPCR assay. Results revealed presence of antibodies of MAP in 3 serum samples for ELISA. The qPCR assay was carried out using standard curve method targeting the MAP specific insertion element IS900. Results revealed that 10 of the samples were positive for MAP DNA in qPCR. ELISA was able to detect antibodies for MAP showing 2.48% infection rate among the 70 buffaloes tested using blood serum samples. On the other hand, qPCR was able to detect MAP using IS900 showed 14.28% infection rate among buffaloes tested using fecal samples. Nucleotide sequence of isolated MAP showed high homology (99-100%) among the reported MAP isolates in the GenBank.


Assuntos
Búfalos/microbiologia , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/microbiologia , Animais , Anticorpos Antibacterianos/sangue , DNA Bacteriano/sangue , Ensaio de Imunoadsorção Enzimática , Fezes/microbiologia , Paratuberculose/sangue , Filipinas , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...