Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Phys Chem Au ; 3(5): 434-443, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37780540

RESUMO

Bioinformatic analysis of the Delta SARS-CoV-2 genome reveals a single nucleotide mutation (G15U) in the stem-loop II motif (s2m) relative to ancestral SARS-CoV-2. Despite sequence similarity, unexpected differences between SARS-CoV-2 and Delta SARS-CoV-2 s2m homodimerization experiments require the discovery of unknown structural and thermodynamic changes necessary to rationalize the data. Using our reported SARS-CoV-2 s2m model, we induced the G15U substitution and performed 3.5 microseconds of unbiased molecular dynamics simulation at 283 and 310 K. The resultant Delta s2m adopted a secondary structure consistent with our reported NMR data, resulting in significant deviations in the tertiary structure and dynamics from our SARS-CoV-2 s2m model. First, we find differences in the overall three-dimensional structure, where the characteristic 90° L-shaped kink of the SARS-CoV-2 s2m did not form in the Delta s2m resulting in a "linear" hairpin with limited bending dynamics. Delta s2m helical parameters are calculated to align closely with A-form RNA, effectively eliminating a hinge point to form the L-shape kink by correcting an upper stem defect in SARS-CoV-2 induced by a noncanonical and dynamic G:A base pair. Ultimately, the shape difference rationalizes the migration differences in reported electrophoresis experiments. Second, increased fluctuation of the Delta s2m palindromic sequence, within the terminal loop, compared to SARS-CoV-2 s2m results in an estimated increase of entropy of 6.8 kcal/mol at 310 K relative to the SARS-CoV-2 s2m. The entropic difference offers a unique perspective on why the Delta s2m homodimerizes less spontaneously, forming fewer kissing dimers and extended duplexes compared to SARS-CoV-2. In this work, both the L-shape reduction and palindromic entropic penalty provides an explanation of our reported in vitro electrophoresis homodimerization results. Ultimately, the structural, dynamical, and entropic differences between the SARS-CoV-2 s2m and Delta s2m serve to establish a foundation for future studies of the s2m function in the viral lifecycle.

2.
RNA ; 29(11): 1754-1771, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604684

RESUMO

The s2m, a highly conserved 41-nt hairpin structure in the SARS-CoV-2 genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and the subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p. Bioinformatics analysis of the GISAID database targeting the s2m element reveals a >99% correlation of a single nucleotide mutation at the 15th position (G15U) in Delta SARS-CoV-2. Based on 1H NMR spectroscopy assignments comparing the imino proton resonance region of s2m and the s2m G15U at 19°C, we show that the U15-A29 base pair closes, resulting in a stabilization of the upper stem without overall secondary structure deviation. Increased stability of the upper stem did not affect the chaperone activity of the viral N protein, as it was still able to convert the kissing dimers formed by s2m G15U into a stable duplex conformation, consistent with the s2m reference. However, we show that the s2m G15U mutation drastically impacts the binding of host miR-1307-3p. These findings demonstrate that the observed G15U mutation alters the secondary structure of s2m with subsequent impact on viral binding of host miR-1307-3p, with potential consequences on immune responses.


Assuntos
COVID-19 , MicroRNAs , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Dimerização , Mutação , MicroRNAs/metabolismo
3.
RNA Biol ; 20(1): 469-481, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516934

RESUMO

Histone mRNA degradation is controlled by the unique 3' stem-loop of histone mRNA and the stem-loop binding protein (SLBP). As part of this process, the 3' stem-loop is trimmed by the histone-specific 3' exonuclease (3'hExo) and uridylated by the terminal uridylyl transferase 7 (TUT7), creating partially degraded intermediates with short uridylations. The role of these uridylations in degradation is not fully understood. Our work examines changes in the stability of the ternary complex created by trimming and uridylation of the stem-loop to better understand the role of this process in the histone mRNA life cycle. In this study, we used fluorescence polarization and electrophoretic mobility shift assays to demonstrate that both SLBP and 3'hExo can bind to uridylated and partially degraded stem-loop intermediates, although with lower affinity. We further characterized this complex by performing 1-µs molecular dynamics simulations using the AMBER force field and Nanoscale Molecular Dynamics (NAMD). These simulations show that while uridylation helps maintain the overall shape of the stem-loop, the combination of uridylation and dephosphorylation of the TPNK motif in SLBP disrupts key RNA-protein interactions. They also demonstrate that uridylation allows 3'hExo to maintain contact with the stem-loop after partial degradation and plays a role in disrupting key base pairs in partially degraded histone mRNA intermediates. Together, these experiments and simulations suggest that trimming by 3'hExo, uridylation, and SLBP dephosphorylation weakens both RNA-protein interactions and the stem-loop itself. Our results further elucidate the role of uridylation and SLBP dephosphorylation in the early stages of histone mRNA degradation.


Assuntos
Histonas , Simulação de Dinâmica Molecular , Ensaio de Desvio de Mobilidade Eletroforética , RNA Mensageiro/genética
4.
bioRxiv ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37292986

RESUMO

The 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked the spread of a novel human coronavirus. While the viral life cycle is well understood, most of the interactions at the virus-host interface remain elusive. Furthermore, the molecular mechanisms behind disease severity and immune evasion are still largely unknown. Conserved elements of the viral genome such as secondary structures within the 5'- and 3'-untranslated regions (UTRs) serve as attractive targets of interest and could prove crucial in furthering our understanding of virus-host interactions. It has been proposed that microRNA (miR) interactions with viral components could be used by both the virus and host for their own benefit. Analysis of the SARS-CoV-2 viral genome 3'-UTR has revealed the potential for host cellular miR binding sites, providing sites for specific interactions with the virus. In this study, we demonstrate that the SARS-CoV-2 genome 3'-UTR binds the host cellular miRNAs miR-760-3p, miR-34a-5p, and miR-34b-5p, which have been shown to influence translation of interleukin-6 (IL-6), the IL-6 receptor (IL-6R), as well as progranulin (PGRN), respectively, proteins that have roles in the host immune response and inflammatory pathways. Furthermore, recent work suggests the potential of miR-34a-5p and miR-34b-5p to target and inhibit translation of viral proteins. Native gel electrophoresis and steady-state fluorescence spectroscopy were utilized to characterize the binding of these miRs to their predicted sites within the SARS-CoV-2 genome 3'-UTR. Additionally, we investigated 2'-fluoro-D-arabinonucleic acid (FANA) analogs of these miRNAs as competitive binding inhibitors for these miR binding interactions. The mechanisms detailed in this study have the potential to drive the development of antiviral treatments for SARS-CoV-2 infection, and provide a potential molecular basis for cytokine release syndrome and immune evasion which could implicate the host-virus interface.

5.
J Chem Theory Comput ; 19(11): 3346-3358, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37195939

RESUMO

γ-Modified peptide nucleic acids (γPNAs) serve as potential therapeutic agents against genetic diseases. Miniature poly(ethylene glycol) (miniPEG) has been reported to increase solubility and binding affinity toward genetic targets, yet details of γPNA structure and dynamics are not understood. Within our work, we parameterized missing torsional and electrostatic terms for the miniPEG substituent on the γ-carbon atom of the γPNA backbone in the CHARMM force field. Microsecond timescale molecular dynamics simulations were carried out on six miniPEG-modified γPNA duplexes from NMR structures (PDB ID: 2KVJ). Three NMR models for the γPNA duplex (PDB ID: 2KVJ) were simulated as a reference for structural and dynamic changes captured for the miniPEG-modified γPNA duplex. Principal component analysis performed on the γPNA backbone atoms identified a single isotropic conformational substate (CS) for the NMR simulations, whereas four anisotropic CSs were identified for the ensemble of miniPEG-modified γPNA simulations. The NMR structures were found to have a 23° helical bend toward the major groove, consistent with our simulated CS structure of 19.0°. However, a significant difference between simulated methyl- and miniPEG-modified γPNAs involved the opportunistic invasion of miniPEG through the minor and major groves. Specifically, hydrogen bond fractional analysis showed that the invasion was particularly prone to affect the second G-C base pair, reducing the Watson-Crick base pair hydrogen bond by 60% over the six simulations, whereas the A-T base pairs decreased by only 20%. Ultimately, the invasion led to base stack reshuffling, where the well-ordered base stacking was reduced to segmented nucleobase stacking interactions. Our 6 µs timescale simulations indicate that duplex dissociation suggests the onset toward γPNA single strands, consistent with the experimental observation of decreased aggregation. To complement the insight of miniPEG-modified γPNA structure and dynamics, the new miniPEG force field parameters allow for further exploration of such modified γPNA single strands as potential therapeutic agents against genetic diseases.


Assuntos
Ácidos Nucleicos Peptídicos , Pareamento de Bases , Ácidos Nucleicos Peptídicos/química , Conformação Molecular , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico
6.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798421

RESUMO

The stem loop 2 motif (s2m), a highly conserved 41-nucleotide hairpin structure in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p. Bioinformatics analysis of the GISAID database targeting the s2m element reveals a greater than 99% correlation of a single nucleotide mutation at the 15 th position (G15U) in Delta SARS-CoV-2. Based on 1 H NMR assignments comparing the imino proton resonance region of s2m and the G15U at 19°C, we find that the U15-A29 base pair closes resulting in a stabilization of the upper stem without overall secondary structure deviation. Increased stability of the upper stem did not affect the chaperone activity of the viral N protein, as it was still able to convert the kissing dimers formed by s2m G15U into a stable duplex conformation, consistent with the s2m reference. However, we find that the s2m G15U mutation drastically reduces the binding affinity of the host miR-1307-3p. These findings demonstrate that the observed G15U mutation alters the secondary structure of s2m with subsequent impact on viral binding of host miR-1307-3p, with potential consequences on the immune response.

7.
ACS Phys Chem Au ; 3(1): 30-43, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36711027

RESUMO

The functional role of the highly conserved stem-loop II motif (s2m) in SARS-CoV and SARS-CoV-2 in the viral lifecycle remains enigmatic and an intense area of research. Structure and dynamics of the s2m are key to establishing a structure-function connection, yet a full set of atomistic resolution coordinates is not available for SARS-CoV-2 s2m. Our work constructs three-dimensional coordinates consistent with NMR solution phase data for SARS-CoV-2 s2m and provides a comparative analysis with its counterpart SARS-CoV s2m. We employed initial coordinates based on PDB ID 1XJR for SARS-CoV s2m and two models for SARS-CoV-2 s2m: one based on 1XJR in which we introduced the mutations present in SARS-CoV-2 s2m and the second based on the available SARS-CoV-2 NMR NOE data supplemented with knowledge-based methods. For each of the three systems, 3.5 µs molecular dynamics simulations were used to sample the structure and dynamics, and principal component analysis (PCA) reduced the ensembles to hierarchal conformational substates for detailed analysis. Dilute solution simulations of SARS-CoV s2m demonstrate that the GNRA-like terminal pentaloop is rigidly defined by base stacking uniquely positioned for possible kissing dimer formation. However, the SARS-CoV-2 s2m simulation did not retain the reported crystallographic SARS-CoV motifs and the terminal loop expands to a highly dynamic "nonaloop." Increased flexibility and structural disorganization are observed for the larger terminal loop, where an entropic penalty is computed to explain the experimentally observed reduction in kissing complex formation. Overall, both SARS-CoV and SARS-CoV-2 s2m elements have a similarly pronounced L-shape due to different motif interactions. Our study establishes the atomistic three-dimensional structure and uncovers dynamic differences that arise from s2m sequence changes, which sets the stage for the interrogation of different mechanistic pathways of suspected biological function.

10.
Nucleic Acids Res ; 50(2): 1017-1032, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34908151

RESUMO

The ongoing COVID-19 pandemic highlights the necessity for a more fundamental understanding of the coronavirus life cycle. The causative agent of the disease, SARS-CoV-2, is being studied extensively from a structural standpoint in order to gain insight into key molecular mechanisms required for its survival. Contained within the untranslated regions of the SARS-CoV-2 genome are various conserved stem-loop elements that are believed to function in RNA replication, viral protein translation, and discontinuous transcription. While the majority of these regions are variable in sequence, a 41-nucleotide s2m element within the genome 3' untranslated region is highly conserved among coronaviruses and three other viral families. In this study, we demonstrate that the SARS-CoV-2 s2m element dimerizes by forming an intermediate homodimeric kissing complex structure that is subsequently converted to a thermodynamically stable duplex conformation. This process is aided by the viral nucleocapsid protein, potentially indicating a role in mediating genome dimerization. Furthermore, we demonstrate that the s2m element interacts with multiple copies of host cellular microRNA (miRNA) 1307-3p. Taken together, our results highlight the potential significance of the dimer structures formed by the s2m element in key biological processes and implicate the motif as a possible therapeutic drug target for COVID-19 and other coronavirus-related diseases.


Assuntos
Regiões 3' não Traduzidas/genética , COVID-19/genética , MicroRNAs/genética , Motivos de Nucleotídeos/genética , RNA Viral/genética , SARS-CoV-2/genética , Sequência de Bases , Sítios de Ligação/genética , COVID-19/metabolismo , COVID-19/virologia , Sequência Conservada/genética , Dimerização , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Humanos , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Espectroscopia de Prótons por Ressonância Magnética/métodos , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia
11.
Front Mol Biosci ; 7: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118033

RESUMO

Fused in sarcoma (FUS), identified as the heterogeneous nuclear ribonuclear protein P2, is expressed in neuronal and non-neuronal tissue, and among other functions, has been implicated in messenger RNA (mRNA) transport and possibly local translation regulation. Although FUS is mainly localized to the nucleus, in the neurons FUS has also been shown to localize to the post-synaptic density, as well as to the pre-synapse. Additionally, the FUS deletion in cultured hippocampal cells results in abnormal spine and dendrite morphology. Thus, FUS may play a role in synaptic function regulation, mRNA localization, and local translation. Many dendritic mRNAs have been shown to form G quadruplex structures in their 3'-untranslated region (3'-UTR). Since FUS contains three arginine-glycine-glycine (RGG) boxes, an RNA binding domain shown to bind with high affinity and specificity to RNA G quadruplex structures, in this study we hypothesized that FUS recognizes these structural elements in its neuronal mRNA targets. Two neuronal mRNAs found in the pre- and post-synapse are the post-synaptic density protein 95 (PSD-95) and Shank1 mRNAs, which encode for proteins involved in synaptic plasticity, maintenance, and function. These mRNAs have been shown to form 3'-UTR G quadruplex structures and were also enriched in FUS hydrogels. In this study, we used native gel electrophoresis and steady-state fluorescence spectroscopy to demonstrate specific nanomolar binding of the FUS C-terminal RGG box and of full-length FUS to the RNA G quadruplex structures formed in the 3'-UTR of PSD-95 and Shank1a mRNAs. These results point toward a novel mechanism by which FUS targets neuronal mRNA and given that these PSD-95 and Shank1 3'-UTR G quadruplex structures are also targeted by the fragile X mental retardation protein (FMRP), they raise the possibility that FUS and FMRP might work together to regulate the translation of these neuronal mRNA targets.

12.
Int J Mol Sci ; 21(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991575

RESUMO

Alzheimer's disease (AD), the most common age-related neurodegenerative disease, is associated with various forms of cognitive and functional impairment that worsen with disease progression. AD is typically characterized as a protein misfolding disease, in which abnormal plaques form due to accumulation of tau and ß-amyloid (Aß) proteins. An assortment of proteins is responsible for the processing and trafficking of Aß, including sortilin-related receptor 1 (SORL1). Recently, a genome-wide association study of microRNA-related variants found that a single nucleotide polymorphism (SNP) rs2291418 within premature microRNA-1229 (pre-miRNA-1229) is significantly associated with AD. Moreover, the levels of the mature miRNA-1229-3p, which has been shown to regulate the SORL1 translation, are increased in the rs2291418 pre-miRNA-1229 variant. In this study we used various biophysical techniques to show that pre-miRNA-1229 forms a G-quadruplex secondary structure that coexists in equilibrium with the canonical hairpin structure, potentially controlling the production of the mature miR-1229-3p, and furthermore, that the AD-associated SNP rs2291418 pre-miR-1229 changes the equilibrium between these structures. Thus, the G-quadruplex structure we identified within pre-miRNA-1229 could potentially act as a novel therapeutic target in AD.


Assuntos
Doença de Alzheimer , Quadruplex G , MicroRNAs/química , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
13.
PLoS One ; 14(5): e0217275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31112584

RESUMO

Fragile X syndrome, the most common inherited form of intellectual disability, is caused by the CGG trinucleotide expansion in the 5'-untranslated region of the Fmr1 gene on the X chromosome, which silences the expression of the fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA, which encodes for the postsynaptic density protein 95, and together with microRNA-125a to mediate the reversible inhibition of the PSD-95 mRNA translation in neurons. The miR-125a binding site within the PSD-95 mRNA 3'-untranslated region (UTR) is embedded in a G-rich region bound by FMRP, which we have previously demonstrated folds into two parallel G-quadruplex structures. The FMRP regulation of PSD-95 mRNA translation is complex, being mediated by its phosphorylation. While the requirement for FMRP in the regulation of PSD-95 mRNA translation is clearly established, the exact mechanism by which this is achieved is not known. In this study, we have shown that both unphosphorylated FMRP and its phosphomimic FMRP S500D bind to the PSD-95 mRNA G-quadruplexes with high affinity, whereas only FMRP S500D binds to miR-125a. These results point towards a mechanism by which, depending on its phosphorylation status, FMRP acts as a switch that potentially controls the stability of the complex formed by the miR-125a-guided RNA induced silencing complex (RISC) and PSD-95 mRNA.


Assuntos
Proteína 4 Homóloga a Disks-Large/biossíntese , Proteína do X Frágil da Deficiência Intelectual/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Proteína 4 Homóloga a Disks-Large/genética , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Quadruplex G , Humanos , MicroRNAs/química , MicroRNAs/genética , Modelos Moleculares , Fosforilação , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
eNeuro ; 3(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27957526

RESUMO

The fragile X mental retardation protein (FMRP) is an mRNA-binding regulator of protein translation that associates with 4-6% of brain transcripts and is central to neurodevelopment. Autism risk genes' transcripts are overrepresented among FMRP-binding mRNAs, and FMRP loss-of-function mutations are responsible for fragile X syndrome, the most common cause of monogenetic autism. It is thought that FMRP-dependent translational repression is governed by the phosphorylation of serine residue 499 (S499). However, recent evidence suggests that S499 phosphorylation is not modulated by metabotropic glutamate receptor class I (mGluR-I) or protein phosphatase 2A (PP2A), two molecules shown to regulate FMRP translational repression. Moreover, the mammalian FMRP S499 kinase remains unknown. We found that casein kinase II (CK2) phosphorylates murine FMRP S499. Further, we show that phosphorylation of FMRP S499 permits phosphorylation of additional, nearby residues. Evidence suggests that these nearby residues are modulated by mGluR-I and PP2A pathways. These data support an alternative phosphodynamic model of FMRP that is harmonious with prior studies and serves as a framework for further investigation.


Assuntos
Caseína Quinase II/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Animais , Western Blotting , Caseína Quinase II/antagonistas & inibidores , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Naftiridinas/farmacologia , Fenazinas , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Biossíntese de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Tempo
15.
Mol Biol Cell ; 27(3): 518-34, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26658614

RESUMO

Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5' untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1-mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development.


Assuntos
Proteína GAP-43/metabolismo , Cones de Crescimento/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Crescimento Celular , Linhagem Celular , Córtex Cerebral/citologia , Quadruplex G , Proteína GAP-43/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Camundongos , Neuritos/fisiologia , Cultura Primária de Células , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Mol Biosyst ; 11(12): 3222-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26412477

RESUMO

Fragile X syndrome, the most common cause of inherited intellectual disability, is caused by a trinucleotide CGG expansion in the 5'-untranslated region of the FMR1 gene, which leads to the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, an RNA-binding protein that regulates the translation of specific mRNAs, has been shown to bind a subset of its mRNA targets by recognizing G quadruplex structures. It has been suggested that FMRP controls the local protein synthesis of several protein components of the post synaptic density (PSD) in response to specific cellular needs. We have previously shown that the interactions between FMRP and mRNAs of the PSD scaffold proteins PSD-95 and Shank1 are mediated via stable G-quadruplex structures formed within the 3'-untranslated regions of these mRNAs. In this study we used biophysical methods to show that a comparable G quadruplex structure forms in the 3'-untranslated region of the glutamate receptor subunit NR2B mRNA encoding for a subunit of N-methyl-d-aspartate (NMDA) receptors that is recognized specifically by FMRP, suggesting a common theme for FMRP recognition of its dendritic mRNA targets.


Assuntos
Regiões 3' não Traduzidas , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Quadruplex G , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Sequência de Bases , Síndrome do Cromossomo X Frágil , Humanos , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Termodinâmica
17.
RNA ; 21(1): 48-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25406362

RESUMO

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3'-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3' UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson-Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , MicroRNAs/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Proteína 4 Homóloga a Disks-Large , Síndrome do Cromossomo X Frágil/genética , Quadruplex G , Humanos , MicroRNAs/química , Dados de Sequência Molecular , RNA Mensageiro/química , Termodinâmica
18.
RNA ; 20(1): 103-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24249225

RESUMO

Fragile X syndrome, the most common form of inherited mental impairment in humans, is caused by the absence of the fragile X mental retardation protein (FMRP) due to a CGG trinucleotide repeat expansion in the 5'-untranslated region (UTR) and subsequent translational silencing of the fragile x mental retardation-1 (FMR1) gene. FMRP, which is proposed to be involved in the translational regulation of specific neuronal messenger RNA (mRNA) targets, contains an arginine-glycine-glycine (RGG) box RNA binding domain that has been shown to bind with high affinity to G-quadruplex forming mRNA structures. FMRP undergoes alternative splicing, and the binding of FMRP to a proposed G-quadruplex structure in the coding region of its mRNA (named FBS) has been proposed to affect the mRNA splicing events at exon 15. In this study, we used biophysical methods to directly demonstrate the folding of FMR1 FBS into a secondary structure that contains two specific G-quadruplexes and analyze its interactions with several FMRP isoforms. Our results show that minor splice isoforms, ISO2 and ISO3, created by the usage of the second and third acceptor sites at exon 15, bind with higher affinity to FBS than FMRP ISO1, which is created by the usage of the first acceptor site. FMRP ISO2 and ISO3 cannot undergo phosphorylation, an FMRP post-translational modification shown to modulate the protein translation regulation. Thus, their expression has to be tightly regulated, and this might be accomplished by a feedback mechanism involving the FMRP interactions with the G-quadruplex structures formed within FMR1 mRNA.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Quadruplex G , Sequência de Aminoácidos , Sequência de Bases , Fenômenos Biofísicos , Proteína do X Frágil da Deficiência Intelectual/química , Humanos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo
19.
RNA Biol ; 11(11): 1364-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25692235

RESUMO

Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, is caused by the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, which regulates the transport and translation of specific mRNAs, uses its RGG box domain to bind mRNA targets that form G-quadruplex structures. One of the FMRP in vivo targets, Shank1 mRNA, encodes the master scaffold proteins of the postsynaptic density (PSD) which regulate the size and shape of dendritic spines because of their capacity to interact with many different PSD components. Due to their effect on spine morphology, altered translational regulation of Shank1 transcripts may contribute to the FXS pathology. We hypothesized that the FMRP interactions with Shank1 mRNA are mediated by the recognition of the G quadruplex structure, which has not been previously demonstrated. In this study we used biophysical techniques to analyze the Shank1 mRNA 3'-UTR and its interactions with FMRP and its phosphorylated mimic FMRP S500D. We found that the Shank1 mRNA 3 ' -UTR adopts two very stable intramolecular G-quadruplexes which are bound specifically and with high affinity by FMRP both in vitro and in vivo. These results suggest a role of G-quadruplex RNA motif as a structural element in the common mechanism of FMRP regulation of its dendritic mRNA targets.


Assuntos
Regiões 3' não Traduzidas/genética , Espinhas Dendríticas/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Quadruplex G , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Algoritmos , Dicroísmo Circular , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Regulação da Expressão Gênica , Humanos , Cinética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Espectrometria de Fluorescência , Termodinâmica
20.
Nucleic Acids Res ; 41(4): 2526-40, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275555

RESUMO

Multiple conserved structural cis-acting regulatory elements have been recognized both in the coding and untranslated regions (UTRs) of the hepatitis C virus (HCV) genome. For example, the cis-element 5BSL3.2 in the HCV-coding region has been predicted to use both its apical and internal loops to interact with the X RNA in the 3'-UTR, with the IIId domain in the 5'-UTR and with the Alt sequence in the coding region. Additionally, the X RNA region uses a palindromic sequence that overlaps the sequence required for the interaction with 5BSL3.2, to dimerize with another HCV genome. The ability of the 5BSL3.2 and X RNA regions to engage in multi-interactions suggests the existence of one or more molecular RNA switches which may regulate different steps of the HCV life cycle. In this study, we used biophysical methods to characterize the essential interactions of these HCV cis-elements at the molecular level. Our results indicate that X RNA interacts with 5BSL3.2 and another X RNA molecule by adopting two different conformations and that 5BSL3.2 engages simultaneously in kissing interactions using its apical and internal loops. Based on these results, we propose a mode of action for possible molecular switches involving the HCV RNA.


Assuntos
Hepacivirus/genética , RNA Viral/química , Sequências Reguladoras de Ácido Ribonucleico , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Sequência de Bases , Dimerização , Genoma Viral , Dados de Sequência Molecular , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...