Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850492

RESUMO

The topic addressed in this article is part of the current concerns of modernizing power systems by promoting and implementing the concept of smart grid(s). The concepts of smart metering, a smart home, and an electric car are developing simultaneously with the idea of a smart city by developing high-performance electrical equipment and systems, telecommunications technologies, and computing and infrastructure based on artificial intelligence algorithms. The article presents contributions regarding the modeling of consumer classification and load profiling in electrical power networks and the efficiency of clustering techniques in their profiling as well as the simulation of the load of medium-voltage/low-voltage network distribution transformers to electricity meters.

2.
Sensors (Basel) ; 22(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35957210

RESUMO

The world is advancing to a new era where a new concept is emerging that deals with "wirelessness". As we know, renewable energy is the future, and this research studied the integration of both fields that results in a futuristic, powerful, and advanced model of wireless body area networks. Every new emerging technology does have some cons; in this case the issue would be the usage of excess energy by the sensors of the model. Our research is focused on solving this excessive usage of energy to promote the optimization of energy. This research work is aimed to design a power-saving protocol (PSP) for wireless body area networks (WBANs) in electronic health monitoring (EHM). Our proposed power-saving protocol (PSP) supports the early detection of suspicious signs or sporadic elder movements. The protocol focuses on solving the excessive energy consumption by the body attached to IoT devices to maximize the power efficiency (EE) of WBAN. In a WSNs network, the number of sensor nodes (SNs) interact with an aggregator and are equipped with energy harvesting capabilities. The energy optimization for the wireless sensor networks is a vital step and the methodology is completely based on renewable energy resources. Our proposed power-saving protocol is based on AI and DNN architectures with a hidden Markov model to obtain the top and bottom limits of the SN sources and a less computationally challenging suboptimal elucidation. The research also addressed many critical technical problems, such as sensor node hardware configuration and energy conservation. The study performed the simulation using the OMNET++ environment and represent through results the source rate to power critical SNs improves WBAN's scheme performance in terms of power efficiency of Sporadic Elder Movements (SEM) during various daily operations.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Fenômenos Físicos , Energia Renovável
3.
Sensors (Basel) ; 22(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808325

RESUMO

In Smart Grid (SG), Transactive Energy Management (TEM) is one of the most promising approaches to boost consumer participation in energy generation, energy management, and establishing decentralized energy market models using Peer-to-Peer (P2P). In P2P, a prosumer produces electric energy at their place using Renewable Energy Resources (RES) such as solar energy, wind energy, etc. Then, this generated energy is traded with consumers (who need the energy) in a nearby locality. P2P facilitates energy exchange in localized micro-energy markets of the TEM system. Such decentralized P2P energy management could cater to diverse prosumers and utility business models. However, the existing P2P approaches suffer from several issues such as single-point-of-failure, network bandwidth, scalability, trust, and security issues. To handle the aforementioned issues, this paper proposes a Decentralized and Transparent P2P Energy Trading (DT-P2PET) scheme using blockchain. The proposed DT-P2PET scheme aims to reduce the grid's energy generation and management burden while also increasing profit for both consumers and prosumers through a dynamic pricing mechanism. The DT-P2PET scheme uses Ethereum-blockchain-based Smart Contracts (SCs) and InterPlanetary File System (IPFS) for the P2P energy trading. Furthermore, a recommender mechanism is also introduced in this study to increase the number of prosumers. The Ethereum SCs are designed and deployed to perform P2P in real time in the proposed DT-P2PET scheme. The DT-P2PET scheme is evaluated based on the various parameters such as profit generation (for prosumer and consumer both), data storage cost, network bandwidth, and data transfer rate in contrast to the existing approaches.


Assuntos
Blockchain , Comércio , Sistemas Computacionais , Armazenamento e Recuperação da Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...