Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 613300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643347

RESUMO

Genomics and high throughput phenomics have the potential to revolutionize the field of wheat (Triticum aestivum L.) breeding. Genomic selection (GS) has been used for predicting various quantitative traits in wheat, especially grain yield. However, there are few GS studies for grain protein content (GPC), which is a crucial quality determinant. Incorporation of secondary correlated traits in GS models has been demonstrated to improve accuracy. The objectives of this research were to compare performance of single and multi-trait GS models for predicting GPC and grain yield in wheat and to identify optimal growth stages for collecting secondary traits. We used 650 recombinant inbred lines from a spring wheat nested association mapping (NAM) population. The population was phenotyped over 3 years (2014-2016), and spectral information was collected at heading and grain filling stages. The ability to predict GPC and grain yield was assessed using secondary traits, univariate, covariate, and multivariate GS models for within and across cycle predictions. Our results indicate that GS accuracy increased by an average of 12% for GPC and 20% for grain yield by including secondary traits in the models. Spectral information collected at heading was superior for predicting GPC, whereas grain yield was more accurately predicted during the grain filling stage. Green normalized difference vegetation index had the largest effect on the prediction of GPC either used individually or with multiple indices in the GS models. An increased prediction ability for GPC and grain yield with the inclusion of secondary traits demonstrates the potential to improve the genetic gain per unit time and cost in wheat breeding.

2.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724061

RESUMO

Genome-wide association mapping is a powerful tool for dissecting the relationship between phenotypes and genetic variants in diverse populations. With the improved cost efficiency of high-throughput genotyping platforms, association mapping is a desirable method of mining populations for favorable alleles that hold value for crop improvement. Stem rust, caused by the fungus f. sp. is a devastating disease that threatens wheat ( L.) production worldwide. Here, we explored the genetic basis of stem rust resistance in a global collection of 1411 hexaploid winter wheat accessions genotyped with 5390 single nucleotide polymorphism markers. To facilitate the development of resistant varieties, we characterized marker-trait associations underlying field resistance to North American races and seedling resistance to the races TTKSK (Ug99), TRTTF, TTTTF, and BCCBC. After evaluating several commonly used linear models, a multi-locus mixed model provided the maximum statistical power and improved the identification of loci with direct breeding application. Ten high-confidence resistance loci were identified, including SNP markers linked to and and at least three newly discovered resistance loci that are strong candidates for introgression into modern cultivars. In the present study, we assessed the power of multi-locus association mapping while providing an in-depth analysis for its practical ability to assist breeders with the introgression of rare alleles into elite varieties.


Assuntos
Basidiomycota/patogenicidade , Estações do Ano , Triticum/genética , Triticum/microbiologia , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Triticum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...