Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 623(7985): 157-166, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853118

RESUMO

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioblastoma/imunologia , Glioblastoma/patologia , Nestina/genética , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/fisiologia , Reprodutibilidade dos Testes , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia
2.
Sci Transl Med ; 15(680): eabn6758, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696484

RESUMO

Severe and prolonged lymphopenia frequently occurs in patients with glioblastoma after standard chemoradiotherapy and has been associated with worse survival, but its underlying biological mechanism is not well understood. To address this, we performed a correlative study in which we collected and analyzed peripheral blood of patients with glioblastoma (n = 20) receiving chemoradiotherapy using genomic and immune monitoring technologies. RNA sequencing analysis of the peripheral blood mononuclear cells (PBMC) showed an elevated concentration of myeloid-derived suppressor cell (MDSC) regulatory genes in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Additional analysis including flow cytometry and single-cell RNA sequencing further confirmed increased numbers of circulating MDSC in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Preclinical murine models were also established and demonstrated a causal relationship between radiation-induced MDSC and systemic lymphopenia using transfusion and depletion experiments. Pharmacological inhibition of MDSC using an arginase-1 inhibitor (CB1158) or phosphodiesterase-5 inhibitor (tadalafil) during radiation therapy (RT) successfully abrogated radiation-induced lymphopenia and improved survival in the preclinical models. CB1158 and tadalafil are promising drugs in reducing radiation-induced lymphopenia in patients with glioblastoma. These results demonstrate the promise of using these classes of drugs to reduce treatment-related lymphopenia and immunosuppression.


Assuntos
Glioblastoma , Linfopenia , Células Supressoras Mieloides , Humanos , Animais , Camundongos , Glioblastoma/complicações , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Leucócitos Mononucleares , Tadalafila , Linfopenia/etiologia , Quimiorradioterapia/efeitos adversos
3.
Front Oncol ; 12: 1006017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387205

RESUMO

Although immune checkpoint inhibitors (ICIs) are increasingly used as second-line treatments for urothelial cancer (UC), only a small proportion of patients respond. Therefore, understanding the mechanisms of response to ICIs is critical to improve clinical outcomes for UC patients. The tumor microenvironment (TME) is recognized as a key player in tumor progression and the response to certain anti-cancer treatments. This study aims to investigate the mechanism of response using integrated genomic and transcriptomic profiling of a UC patient who was part of the KEYNOTE-045 trial and showed an exceptional response to pembrolizumab. Diagnosed in 2014 and receiving first-line chemotherapy without success, the patient took part in the KEYNOTE-045 trial for 2 years. She showed dramatic improvement and has now been free of disease for over 6 years. Recently described by Bagaev et al., the Molecular Functional (MF) Portrait was utilized to dissect genomic and transcriptomic features of the patient's tumor and TME. The patient's tumor was characterized as Immune Desert, which is suggestive of a non-inflamed microenvironment. Integrated whole-exome sequencing (WES) and RNA sequencing (RNA-seq) analysis identified an ATM mutation and high TMB level (33.9 mut/mb), which are both positive biomarkers for ICI response. Analysis further revealed the presence of the APOBEC complex, indicating the potential for use of APOBEC signatures as predictive biomarkers for immunotherapy response. Overall, comprehensive characterization of the patient's tumor and TME with the MF Portrait revealed important insights that could potentially be hypothesis generating to identify clinically useful biomarkers and improve treatment for UC patients.

4.
Cell Rep ; 40(7): 111180, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977503

RESUMO

Intratumor heterogeneity (ITH) represents a major challenge for anticancer therapies. An integrated, multidimensional, multiregional approach dissecting ITH of the clear cell renal cell carcinoma (ccRCC) tumor microenvironment (TME) is employed at the single-cell level with mass cytometry (CyTOF), multiplex immunofluorescence (MxIF), and single-nucleus RNA sequencing (snRNA-seq) and at the bulk level with whole-exome sequencing (WES), RNA-seq, and methylation profiling. Multiregional analyses reveal unexpected conservation of immune composition within each individual patient, with profound differences among patients, presenting patient-specific tumor immune microenvironment signatures despite underlying genetic heterogeneity from clonal evolution. Spatial proteogenomic TME analysis using MxIF identifies 14 distinct cellular neighborhoods and, conversely, demonstrated architectural heterogeneity among different tumor regions. Tumor-expressed cytokines are identified as key determinants of the TME and correlate with clinical outcome. Overall, this work signifies that spatial ITH occurs in ccRCC, which may drive clinical heterogeneity and warrants further interrogation to improve patient outcomes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Citocinas/genética , Heterogeneidade Genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Análise de Célula Única , Microambiente Tumoral/genética
5.
Clin Genitourin Cancer ; 19(6): e374-e381, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34389275

RESUMO

BACKGROUND: Although there are immune checkpoint inhibitors (ICIs) available for the treatment of renal cell carcinoma (RCC), the utility of PD-L1 detection by immunohistochemistry (IHC) as a predictive biomarker in clear cell RCC (ccRCC) remains controversial. Nevertheless, alternative methods for PD-L1 detection, such as RNA sequencing (RNA-Seq), may be clinically useful in ccRCC; therefore, we sought to determine the ability of RNA-Seq to accurately and sensitively detect PD-L1 expression across different ccRCC clinical samples in comparison with IHC. PATIENTS AND METHODS: Patients with ccRCC (n=127) who received treatment from Washington University in St. Louis between 2018 and 2020 were identified. Tumors from these patients were analyzed using RNA-Seq and IHC. RESULTS: PD-L1 detection by RNA-Seq strongly correlated with IHC (P < .001), which was further validated using two independent datasets. Furthermore, RNA-Seq analysis identified an immune-enriched (higher PD-L1 positivity) and an immune-desert (lower PD-L1 positivity) microenvironment of ccRCC, which also correlated with IHC (P < .00001). CONCLUSION: The results demonstrate the ability of RNA-Seq to detect PD-L1 in various ccRCC clinical samples compared to IHC. Ultimately, these findings suggest that PD-L1 detection by RNA-Seq can be further developed to determine the clinical utility of this methodology in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Antígeno B7-H1/genética , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Humanos , Imuno-Histoquímica , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , RNA-Seq , Microambiente Tumoral
6.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34244308

RESUMO

BACKGROUND: Neoantigen (NeoAg) peptides displayed at the tumor cell surface by human leukocyte antigen molecules show exquisite tumor specificity and can elicit T cell mediated tumor rejection. However, few NeoAgs are predicted to be shared between patients, and none to date have demonstrated therapeutic value in the context of vaccination. METHODS: We report here a phase I trial of personalized NeoAg peptide vaccination (PPV) of 24 stage III/IV non-small cell lung cancer (NSCLC) patients who had previously progressed following multiple conventional therapies, including surgery, radiation, chemotherapy, and tyrosine kinase inhibitors (TKIs). Primary endpoints of the trial evaluated feasibility, tolerability, and safety of the personalized vaccination approach, and secondary trial endpoints assessed tumor-specific immune reactivity and clinical responses. Of the 16 patients with epidermal growth factor receptor (EGFR) mutations, nine continued TKI therapy concurrent with PPV and seven patients received PPV alone. RESULTS: Out of 29 patients enrolled in the trial, 24 were immunized with personalized NeoAg peptides. Aside from transient rash, fatigue and/or fever observed in three patients, no other treatment-related adverse events were observed. Median progression-free survival and overall survival of the 24 vaccinated patients were 6.0 and 8.9 months, respectively. Within 3-4 months following initiation of PPV, seven RECIST-based objective clinical responses including one complete response were observed. Notably, all seven clinical responders had EGFR-mutated tumors, including four patients that had continued TKI therapy concurrently with PPV. Immune monitoring showed that five of the seven responding patients demonstrated vaccine-induced T cell responses against EGFR NeoAg peptides. Furthermore, two highly shared EGFR mutations (L858R and T790M) were shown to be immunogenic in four of the responding patients, all of whom demonstrated increases in peripheral blood neoantigen-specific CD8+ T cell frequencies during the course of PPV. CONCLUSIONS: These results show that personalized NeoAg vaccination is feasible and safe for advanced-stage NSCLC patients. The clinical and immune responses observed following PPV suggest that EGFR mutations constitute shared, immunogenic neoantigens with promising immunotherapeutic potential for large subsets of NSCLC patients. Furthermore, PPV with concurrent EGFR inhibitor therapy was well tolerated and may have contributed to the induction of PPV-induced T cell responses.


Assuntos
Vacinas Anticâncer/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Vacinas Anticâncer/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação
7.
Clin Cancer Res ; 27(12): 3478-3490, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33771855

RESUMO

PURPOSE: Multiparametric MRI (mpMRI) has become an indispensable radiographic tool in diagnosing prostate cancer. However, mpMRI fails to visualize approximately 15% of clinically significant prostate cancer (csPCa). The molecular, cellular, and spatial underpinnings of such radiographic heterogeneity in csPCa are unclear. EXPERIMENTAL DESIGN: We examined tumor tissues from clinically matched patients with mpMRI-invisible and mpMRI-visible csPCa who underwent radical prostatectomy. Multiplex immunofluorescence single-cell spatial imaging and gene expression profiling were performed. Artificial intelligence-based analytic algorithms were developed to examine the tumor ecosystem and integrate with corresponding transcriptomics. RESULTS: More complex and compact epithelial tumor architectures were found in mpMRI-visible than in mpMRI-invisible prostate cancer tumors. In contrast, similar stromal patterns were detected between mpMRI-invisible prostate cancer and normal prostate tissues. Furthermore, quantification of immune cell composition and tumor-immune interactions demonstrated a lack of immune cell infiltration in the malignant but not in the adjacent nonmalignant tissue compartments, irrespective of mpMRI visibility. No significant difference in immune profiles was detected between mpMRI-visible and mpMRI-invisible prostate cancer within our patient cohort, whereas expression profiling identified a 24-gene stromal signature enriched in mpMRI-invisible prostate cancer. Prostate cancer with strong stromal signature exhibited a favorable survival outcome within The Cancer Genome Atlas prostate cancer cohort. Notably, five recurrences in the 8 mpMRI-visible patients with csPCa and no recurrence in the 8 clinically matched patients with mpMRI-invisible csPCa occurred during the 5-year follow-up post-prostatectomy. CONCLUSIONS: Our study identified distinct molecular, cellular, and structural characteristics associated with mpMRI-visible csPCa, whereas mpMRI-invisible tumors were similar to normal prostate tissue, likely contributing to mpMRI invisibility.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Inteligência Artificial , Ecossistema , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Proteômica
8.
Cancer Discov ; 11(6): 1468-1489, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33541860

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogeneous disease. Transcriptomic and genetic characterization of DLBCL has increased the understanding of its intrinsic pathogenesis and provided potential therapeutic targets. However, the role of the microenvironment in DLBCL biology remains less understood. Here, we performed a transcriptomic analysis of the microenvironment of 4,655 DLBCLs from multiple independent cohorts and described four major lymphoma microenvironment categories that associate with distinct biological aberrations and clinical behavior. We also found evidence of genetic and epigenetic mechanisms deployed by cancer cells to evade microenvironmental constraints of lymphoma growth, supporting the rationale for implementing DNA hypomethylating agents in selected patients with DLBCL. In addition, our work uncovered new therapeutic vulnerabilities in the biochemical composition of the extracellular matrix that were exploited to decrease DLBCL proliferation in preclinical models. This novel classification provides a road map for the biological characterization and therapeutic exploitation of the DLBCL microenvironment. SIGNIFICANCE: In a translational relevant transcriptomic-based classification, we characterized the microenvironment as a critical component of the B-cell lymphoma biology and associated it with the DLBCL clinical behavior establishing a novel opportunity for targeting therapies.This article is highlighted in the In This Issue feature, p. 1307.


Assuntos
Linfoma Difuso de Grandes Células B/genética , Perfilação da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...