Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35624, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170520

RESUMO

Asynchronous interconnection is essential for integrating AC networks operating at different frequencies, typically 50 Hz and 60 Hz. This need arises from distributed power generation methods, including offshore renewable sources and diverse regional grid configurations. Advanced strategies are required to overcome these frequency differences and ensure uninterrupted power transfer. High-Voltage Direct Current (HVDC) transmission systems facilitate efficient power exchange, enhancing grid reliability and stability. This study focuses on optimizing the Proportional-plus-Integral (PI) controller parameters within a 20 MVA Voltage Source Converters (VSC)-based HVDC system to enable asynchronous interconnection between offshore and onshore AC networks. The offshore VSC regulates active and reactive power, while the onshore VSC controls DC voltage and reactive power. A vector control approach with symmetric optimum PI tuning is proposed for a comprehensive performance assessment of the VSC-based HVDC transmission system. The effectiveness of the tuned PI controller parameters is evaluated through four test cases using MATLAB/Simulink for offline simulation and Typhoon HIL604 for real-time validation. These cases involve abrupt changes in reference active and reactive power for the offshore VSC; and in reference reactive power and DC voltage for the onshore VSC. Results demonstrate rapid and satisfactory dynamic performance across all test cases, as evidenced by offline simulations and real-time validation. The validation highlights the effectiveness of the proposed control design with symmetric optimum PI tuning, confirming its ability to enhance the overall performance of the HVDC transmission system for efficient asynchronous interconnection.

2.
Heliyon ; 9(9): e19264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662719

RESUMO

Integrating nanotechnology in dielectric fluid significantly inhibits losses and boosts overall dielectric fluid performance. There has been research done on the effects of introducing various nanoparticles, such as titania, alumina, silica nanodiamonds, etc. In this paper, a novel nanoparticle, Ceria (CeO2), has been used, and its properties were examined using the FTIR (Fourier Transform Infrared) spectrum, the XRD (X-ray Diffraction) spectrum, the SEM (Scanning Electron Microscopy), and the TEM (Transmission Electron Microscopy). This paper illustrates an efficient dielectric fluid prepared by the successful dispersion of Cerium Oxide (CeO2) nanoparticles in various concentrations into four commercial oils, namely mineral oil, rapeseed oil, synthetic ester oil, and soybean oil, to enhance and improve their dielectric characteristics. The performance investigation emphasises breakdown strength enhancement and other dielectric properties of the colloidal solution comprising different nanoparticle (NP) concentrations. Various commercial oils are used as a base in nano-oil to diversify their applicability as dielectric fluids by measuring the correlation in dielectric parameters and statistically assessing their applicability with normal and Weibull distributions. The obtained experimental data sets were analyzed using the Statistics and Machine Learning Toolbox in MATLAB. The aging measurement has been done only on mineral oil, and results were matched using a predictive model of statistics and the Machine Learning Toolbox in MATLAB. Well-dispersed CeO2 NPs in the insulating oils lead to a significant increase in AC breakdown strength. The effect of ageing on the dielectric properties of nano oils yields better results than conventionally aged oil. It has been observed that the breakdown voltage is enhanced by up to 30% for mineral oil at an optimal concentration of 0.01 g/L, 9% for synthetic ester oil at 0.03 g/L, 18% for rapeseed oil at 0.02 g/L, and 19% for soybean oil at 0.03 g/L nanoparticle concentration. Following the dispersion of CeO2 nanoparticles, the dielectric constant of all insulating oils has also significantly improved. The overall experimental results are promising and show the potential of the CeO2 NPs-based nano oil as an efficient and highly performing dielectric oil for different power applications.

3.
Micromachines (Basel) ; 13(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35630130

RESUMO

In modern industrial manufacturing processes, induction motors are broadly utilized as industrial drives. Online condition monitoring and diagnosis of faults that occur inside and/or outside of the Induction Motor Drive (IMD) system make the motor highly reliable, helping to avoid unscheduled downtimes, which cause more revenue loss and disruption of production. This can be achieved only when the irregularities produced because of the faults are sensed at the moment they occur and diagnosed quickly so that suitable actions to protect the equipment can be taken. This requires intelligent control with a high-performance scheme. Hence, a Field Programmable Gate Array (FPGA) based on neuro-genetic implementation with a Back Propagation Neural network (BPN) is suggested in this article to diagnose the fault more efficiently and almost instantly. It is reported that the classification of the neural network will provide the output within 2 µs although the clone procedure with microcontroller requires 7 ms. This intelligent control with a high-performance technique is applied to the IMD fed by a Voltage Source Inverter (VSI) to diagnose the fault. The proposed approach was simulated and experimentally validated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...