Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(3): 211631, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35291325

RESUMO

Stochastic rounding (SR) randomly maps a real number x to one of the two nearest values in a finite precision number system. The probability of choosing either of these two numbers is 1 minus their relative distance to x. This rounding mode was first proposed for use in computer arithmetic in the 1950s and it is currently experiencing a resurgence of interest. If used to compute the inner product of two vectors of length n in floating-point arithmetic, it yields an error bound with constant n u with high probability, where u is the unit round-off. This is not necessarily the case for round to nearest (RN), for which the worst-case error bound has constant nu. A particular attraction of SR is that, unlike RN, it is immune to the phenomenon of stagnation, whereby a sequence of tiny updates to a relatively large quantity is lost. We survey SR by discussing its mathematical properties and probabilistic error analysis, its implementation, and its use in applications, with a focus on machine learning and the numerical solution of differential equations.

2.
PeerJ Comput Sci ; 7: e330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816984

RESUMO

We explore the floating-point arithmetic implemented in the NVIDIA tensor cores, which are hardware accelerators for mixed-precision matrix multiplication available on the Volta, Turing, and Ampere microarchitectures. Using Volta V100, Turing T4, and Ampere A100 graphics cards, we determine what precision is used for the intermediate results, whether subnormal numbers are supported, what rounding mode is used, in which order the operations underlying the matrix multiplication are performed, and whether partial sums are normalized. These aspects are not documented by NVIDIA, and we gain insight by running carefully designed numerical experiments on these hardware units. Knowing the answers to these questions is important if one wishes to: (1) accurately simulate NVIDIA tensor cores on conventional hardware; (2) understand the differences between results produced by code that utilizes tensor cores and code that uses only IEEE 754-compliant arithmetic operations; and (3) build custom hardware whose behavior matches that of NVIDIA tensor cores. As part of this work we provide a test suite that can be easily adapted to test newer versions of the NVIDIA tensor cores as well as similar accelerators from other vendors, as they become available. Moreover, we identify a non-monotonicity issue affecting floating point multi-operand adders if the intermediate results are not normalized after each step.

3.
Philos Trans A Math Phys Eng Sci ; 378(2166): 20190052, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31955687

RESUMO

Although double-precision floating-point arithmetic currently dominates high-performance computing, there is increasing interest in smaller and simpler arithmetic types. The main reasons are potential improvements in energy efficiency and memory footprint and bandwidth. However, simply switching to lower-precision types typically results in increased numerical errors. We investigate approaches to improving the accuracy of reduced-precision fixed-point arithmetic types, using examples in an important domain for numerical computation in neuroscience: the solution of ordinary differential equations (ODEs). The Izhikevich neuron model is used to demonstrate that rounding has an important role in producing accurate spike timings from explicit ODE solution algorithms. In particular, fixed-point arithmetic with stochastic rounding consistently results in smaller errors compared to single-precision floating-point and fixed-point arithmetic with round-to-nearest across a range of neuron behaviours and ODE solvers. A computationally much cheaper alternative is also investigated, inspired by the concept of dither that is a widely understood mechanism for providing resolution below the least significant bit in digital signal processing. These results will have implications for the solution of ODEs in other subject areas, and should also be directly relevant to the huge range of practical problems that are represented by partial differential equations. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'.


Assuntos
Simulação por Computador , Aprendizado de Máquina , Modelos Neurológicos , Software , Processos Estocásticos , Potenciais de Ação/fisiologia , Algoritmos , Humanos
4.
Front Neurosci ; 12: 816, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524220

RESUMO

This work presents sPyNNaker 4.0.0, the latest version of the software package for simulating PyNN-defined spiking neural networks (SNNs) on the SpiNNaker neuromorphic platform. Operations underpinning realtime SNN execution are presented, including an event-based operating system facilitating efficient time-driven neuron state updates and pipelined event-driven spike processing. Preprocessing, realtime execution, and neuron/synapse model implementations are discussed, all in the context of a simple example SNN. Simulation results are demonstrated, together with performance profiling providing insights into how software interacts with the underlying hardware to achieve realtime execution. System performance is shown to be within a factor of 2 of the original design target of 10,000 synaptic events per millisecond, however SNN topology is shown to influence performance considerably. A cost model is therefore developed characterizing the effect of network connectivity and SNN partitioning. This model enables users to estimate SNN simulation performance, allows the SpiNNaker team to make predictions on the impact of performance improvements, and helps demonstrate the continued potential of the SpiNNaker neuromorphic hardware.

5.
Front Neurosci ; 12: 105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535600

RESUMO

SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity-believed to be one of the main mechanisms behind learning and memory in the brain. A number of Spike-Timing-Dependent-Plasticity(STDP) rules have already been implemented on SpiNNaker and have been shown to be capable of solving various learning tasks in real-time. However, while STDP is an important biological theory of learning, it is a form of Hebbian or unsupervised learning and therefore does not explain behaviors that depend on feedback from the environment. Instead, learning rules based on neuromodulated STDP (three-factor learning rules) have been shown to be capable of solving reinforcement learning tasks in a biologically plausible manner. In this paper we demonstrate for the first time how a model of three-factor STDP, with the third-factor representing spikes from dopaminergic neurons, can be implemented on the SpiNNaker neuromorphic system. Using this learning rule we first show how reward and punishment signals can be delivered to a single synapse before going on to demonstrate it in a larger network which solves the credit assignment problem in a Pavlovian conditioning experiment. Because of its extra complexity, we find that our three-factor learning rule requires approximately 2× as much processing time as the existing SpiNNaker STDP learning rules. However, we show that it is still possible to run our Pavlovian conditioning model with up to 1 × 104 neurons in real-time, opening up new research opportunities for modeling behavioral learning on SpiNNaker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...