Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 26(1-2): 75-82, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19818317

RESUMO

Bacillus sphaericus AKU 229 was found to produce an acetaldehyde-tolerant and phosphorylated compound-tolerant phosphopentomutase useful for enzymatic 2'-deoxyribonucleoside production. The gene encoding the phosphopentomutase was cloned and expressed in Escherichia coli. The E. coli expressing B. sphaericus phosphopentomutase was an excellent catalyst as to production of 2'-deoxyribonucleoside in the presence of acetaldehyde and phosphorylated compounds such as fructose 1,6-diphosphate, and d-glyceraldehyde 3-phosphate, which are derived from glucose through glycolysis with yeast cells, and exist abundantly in the practical reaction mixture for enzymatic 2'-deoxyribonucleoside production.


Assuntos
Bacillus/enzimologia , Biotecnologia/métodos , Desoxirribonucleosídeos/biossíntese , Fosfotransferases/metabolismo , Acetaldeído/farmacologia , Sequência de Aminoácidos , Bacillus/efeitos dos fármacos , Bacillus/genética , Biocatálise/efeitos dos fármacos , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Redes e Vias Metabólicas/efeitos dos fármacos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfotransferases/química , Fosfotransferases/genética , Alinhamento de Sequência , Transformação Genética/efeitos dos fármacos
2.
Biotechnol Lett ; 28(12): 877-81, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16786272

RESUMO

A one-pot enzymatic synthesis of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase was established. Glycolysis by baker's yeast (Saccharomyces cerevisiae) generated ATP which was used to produce D: -glyceraldehyde 3-phosphate production from glucose via fructose 1,6-diphosphate. The D: -glyceraldehyde 3-phosphate produced was transformed to 2'-deoxyribonucleoside via 2-deoxyribose 5-phosphate and then 2-deoxyribose 1-phosphate in the presence of acetaldehyde and a nucleobase by deoxyriboaldolase, phosphopentomutase expressed in Escherichia coli, and a commercial nucleoside phosphorylase. About 33 mM 2'-deoxyinosine was produced from 600 mM glucose, 333 mM acetaldehyde and 100 mM adenine in 24 h. 2'-Deoxyinosine was produced from adenine due to the adenosine deaminase activity of E. coli transformants.


Assuntos
Desoxirribonucleosídeos/biossíntese , Escherichia coli/metabolismo , Saccharomyces/enzimologia , Transformação Bacteriana/genética , Acetaldeído/metabolismo , Biotecnologia/métodos , Escherichia coli/genética , Glucose/metabolismo , Pentosiltransferases/farmacologia , Fosfotransferases/metabolismo , Ribosemonofosfatos/metabolismo , Transformação Bacteriana/fisiologia
3.
Biosci Biotechnol Biochem ; 70(6): 1371-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16794316

RESUMO

2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.


Assuntos
Acetaldeído/metabolismo , Álcoois/metabolismo , Aldeído Liases/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo , Ribosemonofosfatos/biossíntese , Saccharomyces cerevisiae/metabolismo , Acetaldeído/química , Escherichia coli/genética , Fermentação , Frutosedifosfatos/biossíntese , Glucose/química , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Estrutura Molecular , Fosfatos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Temperatura
4.
Appl Microbiol Biotechnol ; 71(5): 615-21, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16283293

RESUMO

2'-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2'-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2'-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2'-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker's yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5'-triphosphate generated from adenosine 5'-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via D-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2'-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2'-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2'-deoxyribonucleoside synthesis. 2'-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.


Assuntos
Acetaldeído/metabolismo , Adenina/metabolismo , Biotecnologia/métodos , Desoxirribonucleosídeos/metabolismo , Glucose/metabolismo , Ribosemonofosfatos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Glicólise , Inosina/análogos & derivados , Inosina/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
5.
Appl Environ Microbiol ; 69(7): 3791-7, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12839746

RESUMO

The gene encoding a deoxyriboaldolase (DERA) was cloned from the chromosomal DNA of Klebsiella pneumoniae B-4-4. This gene contains an open reading frame consisting of 780 nucleotides encoding 259 amino acid residues. The predicted amino acid sequence exhibited 94.6% homology with the sequence of DERA from Escherichia coli. The DERA of K. pneumoniae was expressed in recombinant E. coli cells, and the specific activity of the enzyme in the cell extract was as high as 2.5 U/mg, which was threefold higher than the specific activity in the K. pneumoniae cell extract. One of the E. coli transformants, 10B5/pTS8, which had a defect in alkaline phosphatase activity, was a good catalyst for 2-deoxyribose 5-phosphate (DR5P) synthesis from glyceraldehyde 3-phosphate and acetaldehyde. The E. coli cells produced DR5P from glucose and acetaldehyde in the presence of ATP. Under the optimal conditions, 100 mM DR5P was produced from 900 mM glucose, 200 mM acetaldehyde, and 100 mM ATP by the E. coli cells. The DR5P produced was further transformed to 2'-deoxyribonucleoside through coupling the enzymatic reactions of phosphopentomutase and nucleoside phosphorylase. These results indicated that production of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase is possible with the addition of a suitable energy source, such as ATP.


Assuntos
Acetaldeído/metabolismo , Aldeído Liases/metabolismo , Desoxirribonucleosídeos/biossíntese , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/metabolismo , Ribosemonofosfatos/biossíntese , Aldeído Liases/química , Aldeído Liases/genética , Sequência de Aminoácidos , Sequência de Bases , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Transformação Bacteriana
6.
Biosci Biotechnol Biochem ; 67(4): 933-6, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12784646

RESUMO

2-Deoxyribose 5-phosphate was produced from acetaldehyde and dihydroxyacetone phosphate via D-glyceraldehyde 3-phosphate by Klebsiella pneumoniae B-4-4 through deoxyriboaldolase- and triosephosphate isomerase-catalyzing reactions. Under the optimum conditions, 98.7 mM 2-deoxyribose 5-phosphate was produced from 200 mM acetaldehyde and 117 mM dihydroxyacetone phosphate in 2 h with a molar yield of 84%. The 2-deoxyriobse 5-phosphate produced was directly transformed to 2'-deoxyribonucleoside by phosphopentomutase- and nucleoside phosphorylase-catalyzing reactions.


Assuntos
Desoxirribonucleosídeos/biossíntese , Klebsiella pneumoniae/metabolismo , Ribosemonofosfatos/biossíntese , Acetaldeído/metabolismo , Pentosiltransferases/metabolismo , Fosfotransferases/metabolismo , Fosfatos Açúcares/metabolismo , Trioses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...