Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11404, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762616

RESUMO

Non-alcoholic steatohepatitis (NASH), caused by fat buildup, can lead to liver inflammation and damage. Elucidation of the spatial distribution of fibrotic tissue in the fatty liver in NASH can be immensely useful to understand its pathogenesis. Thus, we developed a novel serial section-3D (SS3D) technique that combines high-resolution image acquisition with 3D construction software, which enabled highly detailed analysis of the mouse liver and extraction and quantification of stained tissues. Moreover, we studied the underexplored mechanism of fibrosis progression in the fatty liver in NASH by subjecting the mice to a high-fat diet (HFD), followed by lipopolysaccharide (LPS) administration. The HFD/LPS (+) group showed extensive fibrosis compared with control; additionally, the area of these fibrotic regions in the HFD/LPS (+) group was almost double that of control using our SS3D technique. LPS administration led to an increase in Tnfα and Il1ß mRNA expression and the number of macrophages in the liver. On the other hand, transforming growth factor-ß1 (Tgfß1) mRNA increased in HFD group compared to that of control group without LPS-administration. In addition, COL1A1 levels increased in hepatic stellate cell (HSC)-like XL-2 cells when treated with recombinant TGF-ß1, which attenuated with recombinant latency-associated protein (rLAP). This attenuation was rescued with LPS-activated macrophages. Therefore, we demonstrated that fatty liver produced "latent-form" of TGF-ß1, which activated by macrophages via inflammatory cytokines such as TNFα and IL1ß, resulting in activation of HSCs leading to the production of COL1A1. Moreover, we established the effectiveness of our SS3D technique in creating 3D images of fibrotic tissue, which can be used to study other diseases as well.


Assuntos
Dieta Hiperlipídica , Lipopolissacarídeos , Cirrose Hepática , Macrófagos , Hepatopatia Gordurosa não Alcoólica , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Ativação de Macrófagos , Imageamento Tridimensional/métodos , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Interleucina-1beta/metabolismo
2.
J Oral Sci ; 66(2): 125-129, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38494703

RESUMO

PURPOSE: Bacterial cells in mature dental plaque produce a high concentration of short-chain fatty acids (SCFAs) such as butyrate and propionate. SCFA-treatment on human gingival epithelial Ca9-22 cells induced cell death. However, the exact mechanism underlying cell death remains unclear. In this study, the relationship between reactive oxygen species (ROS) and autophagy induction during SCFA-induced cell death was examined. METHODS: Human gingival epithelial Ca9-22 cells were treated with butyrate or propionate to induce cell death and the number of dead cells were measured using SYTOX-green dye. A siRNA for ATG5 and N-acetylcysteine (NAC) were used for autophagy reduction and ROS-scavenging, respectively. Release of damage-associated molecular patterns (DAMPs) such as Sin3A-associated protein 130 (SAP130) and high-mobility group box 1 (HMGB1) were detected using western blot. RESULTS: Reducing autophagy significantly suppressed SCFA-induced Ca9-22 cell death. ROS generation was observed upon SCFA treatment, and scavenging ROS with NAC decreased cell death. NAC also reduced the SCFA-induced increase in microtubule-associated protein 1 light chain 3B (LC3B)-I and LC3B-II, and mitigated the release of DAMPs. CONCLUSION: The findings suggest that ROS generation is necessary for autophagy, which is required for SCFA-induced cell death and accompanying DAMP release.


Assuntos
Butiratos , Propionatos , Humanos , Butiratos/farmacologia , Propionatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácidos Graxos Voláteis/farmacologia , Autofagia/fisiologia
3.
J Oral Sci ; 66(2): 102-106, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38417878

RESUMO

PURPOSE: Alveolar osteitis (dry sockets) is a painful condition characterized by a limited immune response. It is typically caused by the removal of blood clots from extracted tooth sockets, which leads to the fermentation of trapped food remnants by oral bacteria in the cavities, producing high concentrations of short-chain fatty acids (SCFAs). This study examined the effects of SCFAs on immunity and bone metabolism. METHODS: Mouse macrophage Raw264.7 cells were treated with oral bacteria supernatants or SCFA mixtures, and inducible nitric oxide synthase (iNOS) levels were determined by western blot. The same cells were treated with SCFA mixtures in the presence of receptor activator of nuclear factor-kappa B ligand (RANKL), and osteoclast-like cells were counted. MC3T3-E1 cells were treated with SCFA mixtures and stained with alizarin red S. RESULTS: Raw264.7 cells treated with oral bacterial culture supernatants of Porphyromonas gingivalis and Fusobacterium nucleatum inhibited lipopolysaccharide (LPS)-induced iNOS production, likely due to SCFA content. SCFA mixtures mimicking these supernatants inhibited the number of RANKL-induced tartrate-resistant acid phosphatase (TRAP)-positive cells and MC3T3-E1 cell mineralization. CONCLUSION: These data suggest that SCFAs produced by P. gingivalis and F. nucleatum may reduce the inflammatory response and mildly induce mineralization of the alveolar walls. These results may contribute to the understanding of alveolar osteitis.


Assuntos
Alvéolo Seco , Camundongos , Animais , Alvéolo Seco/metabolismo , Osteoclastos , Porphyromonas gingivalis , Fosfatase Ácida Resistente a Tartarato/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia
4.
Arch Biochem Biophys ; 750: 109821, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979903

RESUMO

The metastases of breast cancer to bone often cause osteolytic lesions not only by stimulating osteoclasts to resorb the bone but also by inhibiting osteoblasts from bone formation. Although tumor cell-derived extracellular vesicles (EVs) promote osteoclast differentiation and bone resorption, their roles in osteoblast differentiation and functions have not been elucidated. In this study, we investigated the effects of breast cancer cell-derived EVs on osteoblast differentiation and functions in vitro. We found that upon osteogenic induction, 4T1 bone metastatic mouse mammary tumor cell-derived EVs (4T1-EVs) were inhibited matrix mineralization of ST2 mouse bone marrow stromal cells. Temporal expression analysis of osteoblast marker genes, including runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), collagen type I (Col1a1), bone sialoprotein (Bsp), and osteocalcin (Bglap) revealed that 4T1-EVs decreased their expression during the late stage of osteoblast differentiation. Elevated levels of c-Jun N-terminal kinase (JNK) phosphorylation, upon osteogenic induction, were diminished by 4T1-EVs, significantly. In contrast, the nullification of reduced JNK phosphorylation by anisomycin, a potent JNK activator, increased the expression levels of osteoblast differentiation markers. Overall, our data indicated that 4T1-EVs affect osteoblast maturation, at least partially, through the regulation of JNK activity, which provides novel insights into the pathological impact of osteolytic bone metastasis and the role of EVs in osteoblast differentiation.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Animais , Camundongos , Osso e Ossos , Diferenciação Celular , Osteoblastos , Osteogênese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
5.
Gene Expr Patterns ; 49: 119333, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37651925

RESUMO

Development of the mammalian telencephalon, which is the most complex region of the central nervous system, is precisely orchestrated by many signaling molecules. Wnt signaling derived from the cortical hem, a signaling center, is crucial for telencephalic development including cortical patterning and the induction of hippocampal development. Secreted protein R-spondin (Rspo) 1-4 and their receptors, leucine-rich repeat-containing G-protein-coupled receptor (Lgr) 4-6, act as activators of Wnt signaling. Although Rspo expression in the hem during the early stages of cortical development has been reported, comparative expression analysis of Rspos and Lgr4-6 has not been performed. In this study, we examined the detailed spatiotemporal expression patterns of Rspo1-4 and Lgr4-6 in the embryonic and postnatal telencephalon to elucidate their functions. In the embryonic day (E) 10.5-14.5 telencephalon, Rspo1-3 were prominently expressed in the cortical hem. Among their receptors, Lgr4 was observed in the ventral telencephalon, and Lgr6 was highly expressed throughout the telencephalon at the same stages. This suggests that Rspo1-3 and Lgr4 initially regulate telencephalic development in restricted regions, whereas Lgr6 functions broadly. From the late embryonic stage, the expression areas of Rspo1-3 and Lgr4-6 dramatically expanded; their expression was found in the neocortex and limbic system, such as the hippocampus, amygdala, and striatum. Increased Rspo and Lgr expression from the late embryonic stages suggests broad roles of Rspo signaling in telencephalic development. Furthermore, the Lgr+ regions were located far from the Rspo+ regions, especially in the E10.5-14.5 ventral telencephalon, suggesting that Lgrs act via a Rspo-independent pathway.


Assuntos
Sistema Nervoso Central , Hipocampo , Animais , Camundongos , Domínios Proteicos , Via de Sinalização Wnt , Mamíferos
6.
Differentiation ; 133: 88-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37579565

RESUMO

This study investigated the expression of sortilin 1 (SORT1) in cultured human dental pulp-derived stem cells (hDPSCs) and its role in their odontoblastic differentiation. Permanent teeth were extracted from five patients, and the dental pulp was harvested for explant culture. Fluorescence-activated cell sorting was used to analyze the outgrowth of adherent cells and cells that had migrated from the tissue margin. SORT1 expression was detected in hDPSCs simultaneously expressing the mesenchymal stem cell markers CD44 and CD90. The odontoblastic differentiation potential of SORT1-positive hDPSCs was examined via staining for alkaline phosphatase (ALP), an early odontoblastic differentiation marker. ALP staining was more intense in SORT1-positive than in SORT1-negative hDPSCs. Consistently, the expression of mRNA encoding SORT1 and p75NTR, a binding partner of SORT1, increased in SORT1-positive hDPSCs during odontoblastic differentiation. In addition, pro-nerve growth factor (NGF), a ligand for SORT1-p75NTR co-receptor, promoted ALP expression in SORT1-positive hDPSCs, and the interaction between SORT1 and p75NTR was detected using a coimmunoprecipitation assay. The function of SORT1 in odontoblastic differentiation was examined via RNA interference using shRNA targeting SORT1. ALP staining intensity in SORT1/shRNA-transfected cells was markedly lower than in control/shRNA-transfected cells. SORT1 knockdown decreased JUN phosphorylation and recruitment of phosphorylated JUN to the ALP promoter. Collectively, these results indicate that SORT1 is involved in the odontoblastic differentiation of hDPSCs through the JUN N-terminal kinases (JNK)/JUN signaling pathway and that the binding of SORT1 and p75NTR plays an important role in this process.


Assuntos
Polpa Dentária , Odontoblastos , Humanos , Odontoblastos/metabolismo , Células-Tronco , RNA Interferente Pequeno/farmacologia , Diferenciação Celular/genética , Células Cultivadas
7.
Odontology ; 111(3): 658-667, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36482237

RESUMO

Dental plaque bacteria produce high concentrations of short-chain fatty acids (SCFAs), as bacterial metabolites. SCFA-treated gingival epithelial cells undergo cell death. Our previous reports demonstrated that butyrate-induced cell death depends on autophagy and reactive oxygen species (ROS). However, the precise mechanisms underlying SCFA-induced gingival epithelial cell death is poorly understood. Butyrate is a strong histone deacetylase (HDAC) inhibitor. Therefore, we determined the involvement of HDAC inhibitory activity in SCFA-induced gingival epithelial cells. Ca9-22 cells were used as an in vitro counterpart of gingival epithelial cells. Ca9-22 cells were treated with HDAC inhibitors in the presence or absence of C646, a P300 histone acetyltransferase (HAT) inhibitor, and compared the number of dead cells, which are measured using SYTOX Green dye. Acetylation levels of histone H3 were examined using western blotting. Changes in transcriptomes during the butyrate and C646 treatment were examined using RNA sequencing analysis. The butyrate or propionate-treatment of Ca9-22 cells induced acetylation of histone H3, while the C646 treatment strongly reduced the elevated acetylation levels. Accordingly, butyrate or propionate-induced cell death was inhibited by the C646 treatment. Similar results were obtained when other HDAC inhibitors were used. Whole transcriptome analysis revealed that the expression of numerous genes was altered by butyrate-induced histone acetylation. Moreover, some autophagy and ROS-related genes found in the altered genes might induce cell death. This study suggests the need for HDAC-inhibitory activity of bacterial metabolites to induce cell death, and the effects might enhance autophagy and ROS production.


Assuntos
Histonas , Propionatos , Humanos , Histonas/metabolismo , Histonas/farmacologia , Propionatos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Células Epiteliais/metabolismo , Butiratos/metabolismo , Butiratos/farmacologia , Morte Celular , Bactérias , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/farmacologia , Antígenos de Neoplasias/farmacologia
8.
Cancer Sci ; 113(12): 4219-4229, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053115

RESUMO

Aberrant osteoclast formation and activation are the hallmarks of osteolytic metastasis. Extracellular vesicles (EVs), released from bone metastatic tumor cells, play a pivotal role in the progression of osteolytic lesions. However, the mechanisms through which tumor cell-derived EVs regulate osteoclast differentiation and function have not been fully elucidated. In this study, we found that 4T1 bone metastatic mouse mammary tumor cell-derived EVs (4T1-EVs) are taken up by mouse bone marrow macrophages to facilitate osteoclastogenesis. Furthermore, treatment of mature osteoclasts with 4T1-EVs promoted bone resorption, which was accompanied by enhanced survival of mature osteoclasts through the negative regulation of caspase-3. By comparing the miRNA content in 4T1-EVs with that in 67NR nonmetastatic mouse mammary tumor cell-derived EVs (67NR-EVs), miR-92a-3p was identified as one of the most enriched miRNAs in 4T1-EVs, and its transfer into mature osteoclasts significantly reduced apoptosis. Bioinformatic and Western blot analyses revealed that miR-92a-3p directly targeted phosphatase and tensin homolog (PTEN) in mature osteoclasts, resulting in increased levels of phospho-Akt. Our findings provide novel insights into the EV-mediated regulation of osteoclast survival through the transfer of miR-92a-3p, which enhances mature osteoclast survival via the Akt survival signaling pathway, thus promoting bone resorption.


Assuntos
Reabsorção Óssea , Vesículas Extracelulares , MicroRNAs , Osteoclastos , Animais , Camundongos , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
9.
J Oral Sci ; 63(2): 195-197, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33390461

RESUMO

Treating the gingival epithelial Ca9-22 cell with butyrate, a short-chain fatty acid (SCFA) produced by bacteria within mature dental plaque, induces necrotic cellular death. In this report, it was examined whether SCFA-mediated cellular death is accompanied by a release of damage-associated molecular patterns (DAMPs). In addition, the role of reactive oxygen species (ROS) in the release of DAMPs was evaluated. Human gingival epithelial Ca9-22 cells were treated with butyrate or propionate. The amounts of dead cells were then measured using SYTOX-green dye. Released DAMPs were detected by western blot. The role of ROS scavengers, ascorbic acid and N-acetylcysteine, on DAMP-release was evaluated. Dose and time-dependent induction of Ca9-22 cell death was observed during butyrate and propionate treatments. This was accompanied by the release of DAMPs. Ascorbic acid or N-acetylcysteine reduced cellular death and inhibited DAMP-release induced by exposure to butyrate or propionate. These data collectively suggest that SCFA-induced death of gingival epithelial Ca9-22 cells and accompanying release of DAMPs are dependent on ROS.


Assuntos
Butiratos , Propionatos , Antígenos de Neoplasias , Butiratos/farmacologia , Anidrase Carbônica IX , Células Epiteliais , Gengiva , Humanos , Propionatos/farmacologia , Espécies Reativas de Oxigênio
10.
Arch Oral Biol ; 121: 104956, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157493

RESUMO

OBJECTIVE: Rice peptide has antibacterial properties that have been tested in planktonic bacterial culture. However, bacteria form biofilm at disease sites and are resistant to antibacterial agents. The aim of this study was to clarify the mechanisms of action of rice peptide and its amino acid substitution against periodontopathic bacteria and their antibiofilm effects. DESIGN: Porphyromonas gingivalis and Fusobacterium nucleatum were treated with AmyI-1-18 rice peptide or its arginine-substituted analog, G12R, under anaerobic conditions. The amount of biofilm was evaluated by crystal violet staining. The integrity of the bacteria cytoplasmic membrane was studied in a propidium iodide (PI) stain assay and transmission electron microscopy (TEM). RESULTS: Both AmyI-1-18 and G12R inhibited biofilm formation of P. gingivalis and F. nucleatum; in particular, G12R inhibited F. nucleatum at lower concentrations. However, neither peptide eradicated established biofilms significantly. According to the minimum inhibitory concentration and minimum bactericidal concentration against P. gingivalis, AmyI-1-18 has bacteriostatic properties and G12R has bactericidal activity, and both peptides showed bactericidal activity against F. nucleatum. PI staining and TEM analysis indicated that membrane disruption by G12R was enhanced, which suggests that the replacement amino acid reinforced the electostatic interaction between the peptide and bacteria by increase of cationic charge and α-helix content. CONCLUSIONS: Rice peptide inhibited biofilm formation of P. gingivalis and F. nucleatum, and bactericidal activity via membrane destruction was enhanced by amino acid substitution.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Oryza/química , Peptídeos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Substituição de Aminoácidos , Fusobacterium nucleatum/crescimento & desenvolvimento , Proteínas de Plantas/farmacologia , Porphyromonas gingivalis/crescimento & desenvolvimento
11.
Cell Adh Migr ; 14(1): 195-203, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33016205

RESUMO

To elucidate the underlying mechanism of secretory leukocyte protease inhibitor (SLPI)-induced cell migration, we compared SLPI-deleted human gingival carcinoma Ca9-22 (ΔSLPI) cells and original (wild-type: wt) Ca9-22 cells using several microscopic imaging methods and gene expression analysis. Our results indicated reduced migration of ΔSLPI cells compared to wtCa9-22 cells. The lamellipodia/dorsal ruffles were smaller and moved slower in ΔSLPI cells compared to wtCa9-22 cells. Furthermore, well-developed intermediate filament bundles were observed at the desmosome junction of ΔSLPI cells. In addition, Galectin4 was strongly expressed in ΔSLPI cells, and its forced expression suppressed migration of wtCa9-22 cells. Taken together, SLPI facilitates cell migration by regulating lamellipodia/ruffles and desmosomes, in which Galectin4 plays an important role.


Assuntos
Movimento Celular , Desmossomos/metabolismo , Galectina 4/metabolismo , Pseudópodes/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Desmossomos/ultraestrutura , Galectina 4/genética , Humanos , Pseudópodes/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Bone ; 141: 115596, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32814124

RESUMO

In bone tissues, gap junctions form direct links between the cytoplasm of an osteocyte and another adjacent osteocyte or osteoblast, which underlie both bone formation and bone resorption. We have previously demonstrated that alkaline phosphatase (ALP) and bone sialoprotein (BSP), which are osteoblast markers, were induced in mesenchymal stem cells (MSCs) co-cultured with osteoblast-like cell line. However, the molecular mechanism of this process has not been fully addressed. Furthermore, few advances have been made toward elucidating the communication networks that link the status of committed cells such as (pre-) adipocytes that differentiated from MSCs as well as osteoblasts. Therefore, the objective of the present study was to investigate the mechanism underlying the communication network between pre-adipocytes and osteoblasts. We evaluated the effect of co-culture with osteoblast on the cell status of pre-adipocytes using murine osteoblast-like cell line, MLO-A5, and pre-adipocyte-like cell line, 3T3-L1, respectively. The results presented here demonstrated that osteoblasts and pre-adipocytes communicate via gap junctions, and the ensuing drastic increase in ALP and BSP transcription in co-cultured pre-adipocytes was induced, at least partly, via heat shock protein family B member 1 (Hspb1). In addition, terminal differentiation into adipocytes was suppressed in pre-adipocytes during co-culture with osteoblast without loss of adipogenic differentiation ability. Interestingly, after co-culture with osteoblasts, isolated co-cultured pre-adipocytes were able to differentiate to adipocytes as well as original pre-adipocytes. These results suggest that gap junctional communication with osteoblasts suppressed adipogenic differentiation of pre-adipocytes without loss of adipogenic differentiation ability.


Assuntos
Fosfatase Alcalina , Osteoblastos , Células 3T3-L1 , Adipócitos , Animais , Diferenciação Celular , Linhagem Celular , Junções Comunicantes , Proteínas de Choque Térmico , Sialoproteína de Ligação à Integrina , Camundongos
13.
J Pharmacol Sci ; 138(3): 209-213, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30389276

RESUMO

Inorganic polyphosphate (polyP), a linear polymer of orthophosphate, is found at high concentrations in osteoblasts. We demonstrated the effects of various polyP concentrations on the mineralization of rat osteoblast ROS17/2.8 cells. Mineralization of ROS17/2.8 was induced by a high polyP concentration (1 mg/mL), which was accompanied by an upregulation of the bone sialoprotein and osteocalcin. In contrast, a low polyP concentration (1 × 10-2 mg/mL) reduced mineralization without affecting the osteogenic gene expression. Furthermore, gene expression profiling and forced expression analysis indicated that phosphodiesterase 11a could be a candidate involved in the dose-dependent effect of polyP on osteoblast mineralization.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Osteoblastos/metabolismo , Polifosfatos/farmacologia , Animais , Calcificação Fisiológica/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Osteocalcina/biossíntese , Osteopontina/biossíntese , Diester Fosfórico Hidrolases/biossíntese , Ratos
14.
Sci Rep ; 8(1): 9008, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899364

RESUMO

Several studies have demonstrated the remarkable properties of microbiota and their metabolites in the pathogenesis of several inflammatory diseases. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a bioactive metabolite generated by probiotic microorganisms during the process of fatty acid metabolism, has been studied for its protective effects against epithelial barrier impairment in the intestines. Herein, we examined the effect of HYA on gingival epithelial barrier function and its possible application for the prevention and treatment of periodontal disease. We found that GPR40, a fatty acid receptor, was expressed on gingival epithelial cells; activation of GPR40 by HYA significantly inhibited barrier impairment induced by Porphyromonas gingivalis, a representative periodontopathic bacterium. The degradation of E-cadherin and beta-catenin, basic components of the epithelial barrier, was prevented in a GPR40-dependent manner in vitro. Oral inoculation of HYA in a mouse experimental periodontitis model suppressed the bacteria-induced degradation of E-cadherin and subsequent inflammatory cytokine production in the gingival tissue. Collectively, these results suggest that HYA exerts a protective function, through GPR40 signaling, against periodontopathic bacteria-induced gingival epithelial barrier impairment and contributes to the suppression of inflammatory responses in periodontal diseases.


Assuntos
Células Epiteliais/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Ácidos Oleicos/farmacologia , Doenças Periodontais/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Animais , Bactérias/metabolismo , Células CACO-2 , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Expressão Gênica/efeitos dos fármacos , Gengiva/microbiologia , Gengiva/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Doenças Periodontais/metabolismo , Doenças Periodontais/microbiologia , Periodontite/genética , Periodontite/microbiologia , Periodontite/prevenção & controle , Porphyromonas gingivalis/fisiologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
15.
J Oral Sci ; 59(3): 415-423, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28904318

RESUMO

SIRT1 is a NAD-dependent histone deacetylase that is important in a wide variety of physiological and pathophysiological processes. Although many studies have examined the relationship between SIRT1 and cancer, the role of SIRT1 in tumor malignancy is controversial. Here, we examined the effects of the SIRT1 activator CAY10591 in gingival epithelial carcinoma Ca9-22 cells. CAY10591 treatment dose- and time-dependently increased SIRT1 level and activity. The treatment decreased cell growth and induced cell-cycle repressor p21 levels. In addition, dimethyl sulfoxide significantly reduced cellular invasion and migration, and CAY10591 enhanced this decrease. Quantitative PCR analysis showed that CAY10591 decreased expression of several invasion/migration promoter genes and induced repressor genes. Our findings suggest that CAY10591 suppresses cell growth and invasion/migration activity in gingival squamous cell carcinoma Ca9-22 cells.


Assuntos
Divisão Celular/efeitos dos fármacos , Ciclopentanos/farmacologia , Neoplasias Gengivais/patologia , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/prevenção & controle , Pirróis/farmacologia , Quinoxalinas/farmacologia , Sirtuína 1/metabolismo , Linhagem Celular Tumoral , Dimetil Sulfóxido/farmacologia , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Oral Sci ; 59(2): 279-287, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28637988

RESUMO

Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor whose expression level is positively correlated with tumor aggressiveness and metastatic potential. However, the mechanism underlying SLPI-induced enhancement of malignant phenotype is not completely understood. The malignancy of cancer cells is highly dependent on cell migration activity. Our previous study revealed that gingival carcinoma Ca9-22 cells, but not colorectal adenocarcinoma HT-29 cells, expressed SLPI. Therefore, we investigated the migration activity of these two cell types to understand the nature of SLPI-mediated tumor aggressiveness and metastatic potential. In vitro wound healing assay indicated that HT-29 cells and SLPI-deleted Ca9-22 cells showed lower migration activity than wild-type Ca9-22 cells, suggesting that SLPI-induced cell migration plays an important role in tumor aggressiveness and metastatic potential. In addition, our gene expression profiling study based on microarray data for the three cell types identified a number of candidates, including LCP1 and GLI, that could be key molecules in the mechanism of SLPI-induced cell migration.


Assuntos
Adenocarcinoma/genética , Movimento Celular/fisiologia , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica , Neoplasias Gengivais/genética , Inibidor Secretado de Peptidases Leucocitárias/fisiologia , Adenocarcinoma/patologia , Neoplasias Colorretais/patologia , Neoplasias Gengivais/patologia , Células HT29 , Humanos , Metástase Neoplásica , Inibidor Secretado de Peptidases Leucocitárias/genética
17.
J Oral Sci ; 58(2): 163-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27349536

RESUMO

Porphyromonas gingivalis is important in the development of marginal periodontitis. However, the precise role and localization of P. gingivalis in chronic periapical periodontitis remain unclear. Thus, methods that can detect P. gingivalis in formalin-fixed and paraffin-embedded (FFPE) tissue samples are needed. We assessed a technique combining loop-mediated isothermal amplification (LAMP) with PCR (PCR-LAMP) for detection of P. gingivalis, using 110 FFPE tissue samples of chronic apical periodontitis. PCR-LAMP specifically detected P. gingivalis with high sensitivity in FFPE tissue samples, and the sensitivity of the technique was higher than that of PCR or LAMP alone. The results of immunohistochemistry (IHC) confirmed the specificity of PCR-LAMP. IHC showed that P. gingivalis was localized in a granular layer of chronic apical periodontitis, a region that correlated with the localization of macrophages. This is the first study to describe the localization of P. gingivalis in human periapical periodontitis. In conclusion, PCR-LAMP was an effective tool for detecting P. gingivalis in periapical periodontitis. In addition, IHC results improve our understanding of the role of P. gingivalis in the progression of periapical periodontitis. (J Oral Sci 58, 163-169, 2016).


Assuntos
Periodontite Periapical/microbiologia , Reação em Cadeia da Polimerase/métodos , Porphyromonas gingivalis/isolamento & purificação , Humanos , Imuno-Histoquímica , Limite de Detecção
18.
Cancer Lett ; 379(1): 84-93, 2016 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-27238568

RESUMO

Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that diminishes tissue destruction during inflammation. A recent report revealed high levels of SLPI expression in the oral carcinoma cell. In addition, overexpression of SLPI up-regulates metastasis in lung carcinoma cells. On the other hand, matrix metalloproteinases (MMPs) are proteinases that participate in extracellular matrix degradation. SLPI and MMPs are involved as accelerators of the tumor invasion process; however, their exact roles are not fully understood. Understanding the mechanism of tumor invasion requires models that take the effect of microenvironmental factors into account. In one such in vitro model, different carcinoma cells have been shown to invade myoma tissue in highly distinct patterns. We have used this myoma model, as it provides a more natural stroma-like environment, to investigate the role of SLPI in tumor invasion. Our results indicate that the model provides a relevant matrix for tumor invasion studies, and that SLPI is important for the invasion of oral carcinoma Ca9-22 cells in conjunction with MMPs. Furthermore, using bioinformatics analysis, we have identified candidates as key molecules involved in SLPI-mediated tumor invasion.


Assuntos
Movimento Celular , Perfilação da Expressão Gênica , Leiomioma/enzimologia , Neoplasias Bucais/enzimologia , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Neoplasias Uterinas/enzimologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Biologia Computacional , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leiomioma/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Inibidor Secretado de Peptidases Leucocitárias/genética , Transdução de Sinais , Fatores de Tempo , Técnicas de Cultura de Tecidos , Transfecção , Microambiente Tumoral , Neoplasias Uterinas/patologia
19.
J Bone Miner Metab ; 34(6): 627-637, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26475372

RESUMO

Polyphosphate [Poly(P)] has positive effects on osteoblast mineralization; however, the underlying mechanism remains unclear. In addition, it is unknown whether Poly(P) promotes mineralization in soft tissues. We investigated this by using various cells. Poly(P) concentrations of 1 and 0.5 mg/mL yielded high levels of mineralization in ROS17/2.8 osteoblast cells. Similarly, Poly(P) induced mineralization in cell types expressing alkaline phosphatase (ALP), namely, ATDC5 and MC3T3-E1, but not in CHO, C3H10T1/2, C2C12, and 3T3-L1 cells. Furthermore, forced expression of ALP caused Poly(P)-induced mineralization in CHO cells. These results suggest that ALP determines Poly(P)-induced mineralization in a cell-type independent manner.


Assuntos
Fosfatase Alcalina/biossíntese , Calcificação Fisiológica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Osteoblastos/enzimologia , Polifosfatos/farmacologia , Células 3T3-L1 , Fosfatase Alcalina/genética , Animais , Células CHO , Calcificação Fisiológica/genética , Cricetinae , Cricetulus , Regulação Enzimológica da Expressão Gênica/fisiologia , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/fisiologia , Osteoblastos/citologia , Ratos
20.
Mol Immunol ; 67(2 Pt B): 568-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239418

RESUMO

Polymeric immunoglobulin receptor (pIgR) plays an important role in mucosal immune systems. Secretory immunoglobulin A, composed of secretory component of pIgR and a dimeric form of immunoglobulin A, is secreted on mucosal surfaces and serves as a biological defense factor. pIgR gene expression is reportedly induced by activation of the transcription factor nuclear factor (NF)-κB. On the other hand, secretory leukocyte protease inhibitor (SLPI) is a glycoprotein that functions as a serine protease inhibitor. In alveolar epithelial cells, SLPI increases the level of IκBß, which indicates that it is an inhibitor of NF-κB at the protein level. Taken together, SLPI may regulate pIgR expression; however, the specific mechanism by which this occurs is unclear. Therefore, the aim of this study was to elucidatethe influence of SLPI on pIgR expression.SLPI and pIgR localized in goblet cells and ciliated epithelial cells of the gastrointestinal tract, respectively. No cells were detected in which SLPI and pIgR were co-expressed. In addition, recombinant human SLPI stimulation of an epithelial cell line (HT-29) decreased the pIgR expression. The pIgR expression was also higher in SLPI-deficient Ca9-22 cells than in wild-type Ca9-22 cells. Furthermore, a luciferase assay using a NF-κB reporter plasmid and real-time RT-PCR analysis indicated that when SLPI was present, the transcriptional activity of NF-κB protein was suppressed, which was accompanied by anincrease in the protein, but not the mRNA,expression of IκBß. These results demonstrate that SLPI down-regulates pIgR expression through the NF-κB signaling pathway by inhibiting degradation of IκBß protein.


Assuntos
Regulação da Expressão Gênica , NF-kappa B/metabolismo , Receptores de Imunoglobulina Polimérica/genética , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Transdução de Sinais , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Técnicas de Inativação de Genes , Células HT29 , Humanos , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Proteínas Recombinantes/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Componente Secretório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...