Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Stem Cells ; 42(6): 491-498, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38526067

RESUMO

The lung is regarded as having limited regenerative capacity, and there are few treatment options for refractory lung diseases, such as interstitial pneumonia. Lung transplantation is the final option available in some scenarios. Research in this area has been slow owing to the complex structure of the lung for efficient gas exchange between the alveolar spaces and capillaries as well as the difficulty in obtaining specimens from patients with progressive lung disease. However, basic research over the past decade in the field of mouse and human embryology using genetic lineage tracing techniques and stem cell biology using primary and pluripotent stem cell-derived alveolar organoids has begun to clarify the tissue response in various intractable lung diseases and the mechanisms underlying remodeling. Advancement in this area may expand potential therapeutic targets for alveolar regeneration, providing alternatives to lung transplantation, and contribute to the development of effective therapeutic methods that activate or repopulate stem cells in the lung. In this review, we cover research focused on alveolar epithelial cells and discuss methods expected to regenerate lungs that are damaged by diseases.


Assuntos
Organoides , Medicina Regenerativa , Organoides/citologia , Humanos , Medicina Regenerativa/métodos , Animais , Pulmão/citologia , Regeneração/fisiologia , Alvéolos Pulmonares/citologia , Pneumopatias/terapia , Pneumopatias/patologia
3.
Stem Cell Reports ; 19(4): 529-544, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38552636

RESUMO

Alveolar type 2 (AT2) epithelial cells are tissue stem cells capable of differentiating into alveolar type 1 (AT1) cells for injury repair and maintenance of lung homeostasis. However, the factors involved in human AT2-to-AT1 cell differentiation are not fully understood. Here, we established SFTPCGFP and AGERmCherry-HiBiT dual-reporter induced pluripotent stem cells (iPSCs), which detected AT2-to-AT1 cell differentiation with high sensitivity and identified factors inducing AT1 cell differentiation from AT2 and their progenitor cells. We also established an "on-gel" alveolar epithelial spheroid culture suitable for medium-throughput screening. Among the 274 chemical compounds, several single compounds, including LATS-IN-1, converted AT1 cells from AT2 and their progenitor cells. Moreover, YAP/TAZ signaling activation and AKT signaling suppression synergistically recapitulated the induction of transcriptomic, morphological, and functionally mature AT1 cells. Our findings provide novel insights into human lung development and lung regenerative medicine.


Assuntos
Células Epiteliais Alveolares , Células-Tronco Pluripotentes Induzidas , Humanos , Células Cultivadas , Pulmão , Diferenciação Celular , Células Epiteliais
4.
Front Cell Dev Biol ; 11: 1290876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149046

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, continues to spread around the world with serious cases and deaths. It has also been suggested that different genetic variants in the human genome affect both the susceptibility to infection and severity of disease in COVID-19 patients. Angiotensin-converting enzyme 2 (ACE2) has been identified as a cell surface receptor for SARS-CoV and SARS-CoV-2 entry into cells. The construction of an experimental model system using human iPS cells would enable further studies of the association between viral characteristics and genetic variants. Airway and alveolar epithelial cells are cell types of the lung that express high levels of ACE2 and are suitable for in vitro infection experiments. Here, we show that human iPS cell-derived airway and alveolar epithelial cells are highly susceptible to viral infection of SARS-CoV-2. Using gene knockout with CRISPR-Cas9 in human iPS cells we demonstrate that ACE2 plays an essential role in the airway and alveolar epithelial cell entry of SARS-CoV-2 in vitro. Replication of SARS-CoV-2 was strongly suppressed in ACE2 knockout (KO) lung cells. Our model system based on human iPS cell-derived lung cells may be applied to understand the molecular biology regulating viral respiratory infection leading to potential therapeutic developments for COVID-19 and the prevention of future pandemics.

5.
iScience ; 26(10): 107731, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37701577

RESUMO

Interstitial lung disease (ILD) represents a large group of diseases characterized by chronic inflammation and fibrosis of the lungs, for which therapeutic options are limited. Among several causative genes of familial ILD with autosomal dominant inheritance, the mutations in the BRICHOS domain of SFTPC cause protein accumulation and endoplasmic reticulum stress by misfolding its proprotein. Through a screening system using these two phenotypes in HEK293 cells and evaluation using alveolar epithelial type 2 (AT2) cells differentiated from patient-derived induced pluripotent stem cells (iPSCs), we identified Cryptotanshinone (CPT) as a potential therapeutic agent for ILD. CPT decreased cell death induced by mutant SFTPC overexpression in A549 and HEK293 cells and ameliorated the bleomycin-induced contraction of the matrix in fibroblast-dependent alveolar organoids derived from iPSCs with SFTPC mutation. CPT and this screening strategy can apply to abnormal protein-folding-associated ILD and other protein-misfolding diseases.

6.
Exp Anim ; 72(2): 173-182, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36288956

RESUMO

Aging is an extremely complex biological process, and various models, from unicellular organisms to mammals, have been used in its research. The mouse is the most widely used model for studying human aging and diseases due to its high homology and well-established strategies for genetic manipulation. Despite these advantages, the maximum lifespan of laboratory mice is nearly three years, which makes it time-consuming to obtain animals of the desired age. To avoid this issue and efficiently conduct aging research, the National Center for Geriatrics and Gerontology operates its "Aging Farm", a system that supplies aged animals in response to researchers' requests. In the present study, as part of the Aging Farm project, we examined changes in the physiological functions of the lungs and gene expression in lung tissues of Aging Farm animals as they aged. A decline in the physiological function of the lungs was already apparent before 6 months of age, and it continued until at least 1 year of age. On the other hand, gene expression profiling by RNA sequencing showed small changes in the early stages of aging but more pronounced changes at 12 and 24 months of age than at 3 months of age. Age-related lung tissue changes are considered to be involved in the pathogenesis of various chronic respiratory diseases, and the characterization of animals as they age will ensure the quality of the Aging Farm as a resource for aging research.


Assuntos
Envelhecimento , Geriatria , Camundongos , Animais , Humanos , Idoso , Lactente , Fazendas , Camundongos Endogâmicos C57BL , Pulmão , Mamíferos
7.
STAR Protoc ; 2(4): 100993, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34927099

RESUMO

Cellular senescence underlies tissue aging and aging-associated pathologies, as well as lung pathology. We and others have shown that elimination of senescent cells alleviates pulmonary diseases such as fibrosis and emphysema in animal models. We herein describe a protocol for assessing senescence-dependent lung phenotypes in mice. This protocol describes the use of ARF-DTR mice for semi-genetic elimination of lung senescent cells, followed by a pulmonary function test and the combination with pulmonary disease models to study lung pathologies. For complete details on the use and execution of this protocol, please refer to Hashimoto et al. (2016), Kawaguchi et al. (2021), and Mikawa et al. (2018).


Assuntos
Senescência Celular , Modelos Animais de Doenças , Pneumopatias , Pulmão , Animais , Feminino , Medições Luminescentes , Pulmão/citologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pneumopatias/diagnóstico por imagem , Pneumopatias/patologia , Masculino , Camundongos , Imagem Óptica , Testes de Função Respiratória
8.
Stem Cell Reports ; 16(12): 2973-2987, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34798066

RESUMO

Although alveolar epithelial cells play a critical role in the pathogenesis of pulmonary fibrosis, few practical in vitro models exist to study them. Here, we established a novel in vitro pulmonary fibrosis model using alveolar organoids consisting of human pluripotent stem cell-derived alveolar epithelial cells and primary human lung fibroblasts. In this human model, bleomycin treatment induced phenotypes such as epithelial cell-mediated fibroblast activation, cellular senescence, and presence of alveolar epithelial cells in abnormal differentiation states. Chemical screening performed to target these abnormalities showed that inhibition of ALK5 or blocking of integrin αVß6 ameliorated the fibrogenic changes in the alveolar organoids. Furthermore, organoid contraction and extracellular matrix accumulation in the model recapitulated the pathological changes observed in pulmonary fibrosis. This human model may therefore accelerate the development of highly effective therapeutic agents for otherwise incurable pulmonary fibrosis by targeting alveolar epithelial cells and epithelial-mesenchymal interactions.


Assuntos
Células Epiteliais Alveolares/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Organoides/patologia , Fibrose Pulmonar/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Bleomicina , Diferenciação Celular/efeitos dos fármacos , Senescência Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Imidazóis/farmacologia , Quinoxalinas/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
9.
iScience ; 24(9): 103022, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34522864

RESUMO

Cellular senescence acts as a potent tumor-suppression mechanism in mammals; however, it also promotes tumor progression in a non-cell-autonomous manner. We provided insights into the mechanism underlying senescence-dependent metastatic cancer development. The elimination of senescent cells suppressed the lung metastasis of melanoma cells. Using an antibody array screening of humoral factor(s) that depend on cellular senescence, we identified soluble E-cadherin (seCad) as a potential mediator of the senescence-induced melanoma metastasis. seCad enhanced the invasive activity of melanoma cells both in vitro and in vivo, and gene expression profiling revealed that seCad induced genes associated with poor prognosis in patients with melanoma. An analysis of sera from patients revealed that serum seCad is associated with distant metastasis. Our data suggest that senescent cells promote metastatic lung cancer through seCad, and that seCad may be a potential diagnostic marker as well as a therapeutic target for metastatic lung cancer.

10.
Science ; 371(6526): 265-270, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33446552

RESUMO

Removal of senescent cells (senolysis) has been proposed to be beneficial for improving age-associated pathologies, but the molecular pathways for such senolytic activity have not yet emerged. Here, we identified glutaminase 1 (GLS1) as an essential gene for the survival of human senescent cells. The intracellular pH in senescent cells was lowered by lysosomal membrane damage, and this lowered pH induced kidney-type glutaminase (KGA) expression. The resulting enhanced glutaminolysis induced ammonia production, which neutralized the lower pH and improved survival of the senescent cells. Inhibition of KGA-dependent glutaminolysis in aged mice eliminated senescent cells specifically and ameliorated age-associated organ dysfunction. Our results suggest that senescent cells rely on glutaminolysis, and its inhibition offers a promising strategy for inducing senolysis in vivo.


Assuntos
Envelhecimento/metabolismo , Senescência Celular/fisiologia , Glutaminase/metabolismo , Tecido Adiposo/enzimologia , Envelhecimento/genética , Amônia/metabolismo , Animais , Sobrevivência Celular , Senescência Celular/genética , Genes Essenciais , Glutaminase/genética , Humanos , Concentração de Íons de Hidrogênio , Pulmão/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pele/enzimologia
11.
Nat Aging ; 1(12): 1117-1126, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-37117524

RESUMO

Elimination of senescent cells (senolysis) was recently reported to improve normal and pathological changes associated with aging in mice1,2. However, most senolytic agents inhibit antiapoptotic pathways3, raising the possibility of off-target effects in normal tissues. Identification of alternative senolytic approaches is therefore warranted. Here we identify glycoprotein nonmetastatic melanoma protein B (GPNMB) as a molecular target for senolytic therapy. Analysis of transcriptome data from senescent vascular endothelial cells revealed that GPNMB was a molecule with a transmembrane domain that was enriched in senescent cells (seno-antigen). GPNMB expression was upregulated in vascular endothelial cells and/or leukocytes of patients and mice with atherosclerosis. Genetic ablation of Gpnmb-positive cells attenuated senescence in adipose tissue and improved systemic metabolic abnormalities in mice fed a high-fat diet, and reduced atherosclerotic burden in apolipoprotein E knockout mice on a high-fat diet. We then immunized mice against Gpnmb and found a reduction in Gpnmb-positive cells. Senolytic vaccination also improved normal and pathological phenotypes associated with aging, and extended the male lifespan of progeroid mice. Our results suggest that vaccination targeting seno-antigens could be a potential strategy for new senolytic therapies.


Assuntos
Senescência Celular , Longevidade , Camundongos , Animais , Masculino , Senoterapia , Células Endoteliais , Camundongos Knockout , Fenótipo
12.
Biomolecules ; 10(3)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192082

RESUMO

Senescent cells accumulate in tissues during aging or pathological settings. The semi-genetic or pharmacological targeting of senescent cells revealed that cellular senescence underlies many aspects of the aging-associated phenotype and diseases. We previously reported that cellular senescence contributes to aging- and disease-associated pulmonary dysfunction. We herein report that the elimination of Arf-expressing cells ameliorates cigarette smoke-induced lung pathologies in mice. Cigarette smoke induced the expression of Ink4a and Arf in lung tissue with concomitant increases in lung tissue compliance and alveolar airspace. The elimination of Arf-expressing cells prior to cigarette smoke exposure protected against these changes. Furthermore, the administration of cigarette smoke extract lead to pulmonary dysfunction, which was ameliorated by subsequent senescent cell elimination. Collectively, these results suggest that senescent cells are a potential therapeutic target for cigarette smoking-associated lung disease.


Assuntos
Senescência Celular , Fumar Cigarros/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Pneumopatias/metabolismo , Alvéolos Pulmonares/metabolismo , Animais , Fumar Cigarros/genética , Fumar Cigarros/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Pneumopatias/genética , Pneumopatias/patologia , Camundongos , Camundongos Transgênicos , Alvéolos Pulmonares/patologia
13.
Nagoya J Med Sci ; 81(1): 55-64, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30962655

RESUMO

The major hallmarks of Alzheimer's disease (AD) are the extracellular accumulation of pathological amyloid beta (Aß) in the brain parenchyma and Aß deposition in cerebral blood walls (cerebral amyloid angiopathy; CAA). Although CAA occurs in more than 80% of AD patients, the mechanisms of Aß deposition and clearance around the vessel walls are unknown. We found Aß-degrading activity in human serum during analysis of the regulatory mechanism of Aß production in human endothelial cells. To elucidate the metabolic dynamics of Aß surrounding the brain microvessels, we identified Aß-degrading activity in human serum (blood Aß-degrading activity: BADA) by column chromatography and LC/MS. BADA exhibited characteristics of an acidic protein, pI 4.3, which had two different protein surface charges (low and high affinity cations). Both BADA fractions had a relative molecular mass of greater than 400 kDa. Furthermore, BADA in the low affinity cation fraction was inhibited by the serine protease inhibitor 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF). We clarified alpha-2-macroglobulin (a2M) and several serine proteases from this BADA by LC-MS. Moreover, we demonstrated that BADA is increased by approximately 5000-fold in human serum by column chromatography. Therefore, BADA may play an important role in the circulation and metabolism of Aß in human brain microvessels.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Encéfalo/fisiologia , Angiopatia Amiloide Cerebral/patologia , Cromatografia Líquida , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Macroglobulinas/metabolismo , Espectrometria de Massas , Microvasos/patologia , Microvasos/fisiologia , Serina Proteases/metabolismo
14.
Aging Cell ; 17(5): e12827, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30058137

RESUMO

Senescent cells accumulate in tissues during aging and are considered to underlie several aging-associated phenotypes and diseases. We recently reported that the elimination of p19ARF -expressing senescent cells from lung tissue restored tissue function and gene expression in middle-aged (12-month-old) mice. The aging of lung tissue increases the risk of pulmonary diseases such as emphysema, and cellular senescence is accelerated in emphysema patients. However, there is currently no direct evidence to show that cellular senescence promotes the pathology of emphysema, and the involvement of senescence in the development of this disease has yet to be clarified. We herein demonstrated that p19ARF facilitated the development of pulmonary emphysema in mice. The elimination of p19ARF -expressing cells prevented lung tissue from elastase-induced lung dysfunction. These effects appeared to depend on reduced pulmonary inflammation, which is enhanced after elastase stimulation. Furthermore, the administration of a senolytic drug that selectively kills senescent cells attenuated emphysema-associated pathologies. These results strongly suggest the potential of senescent cells as therapeutic/preventive targets for pulmonary emphysema.


Assuntos
Inibidor de Quinase Dependente de Ciclina p19/metabolismo , Citoproteção , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Compostos de Anilina/farmacologia , Animais , Líquido da Lavagem Broncoalveolar , Senescência Celular , Toxina Diftérica/metabolismo , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Elastase Pancreática , Sulfonamidas/farmacologia , Suínos
15.
JCI Insight ; 1(12): e87732, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27699227

RESUMO

Senescent cells accumulate in many tissues as animals age and are considered to underlie several aging-associated pathologies. The tumor suppressors p19ARF and p16INK4a, both of which are encoded in the CDKN2A locus, play critical roles in inducing and maintaining permanent cell cycle arrest during cellular senescence. Although the elimination of p16INK4a-expressing cells extends the life span of the mouse, it is unclear whether tissue function is restored by the elimination of senescent cells in aged animals and whether and how p19ARF contributes to tissue aging. The aging-associated decline in lung function is characterized by an increase in compliance as well as pathogenic susceptibility to pulmonary diseases. We herein demonstrated that pulmonary function in 12-month-old mice was reversibly restored by the elimination of p19ARF-expressing cells. The ablation of p19ARF-expressing cells using a toxin receptor-mediated cell knockout system ameliorated aging-associated lung hypofunction. Furthermore, the aging-associated gene expression profile was reversed after the elimination of p19ARF. Our results indicate that the aging-associated decline in lung function was, at least partly, attributed to p19ARF and was recovered by eliminating p19ARF-expressing cells.


Assuntos
Envelhecimento , Senescência Celular/genética , Pulmão/fisiologia , Proteína Supressora de Tumor p14ARF/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes de Função Respiratória
16.
Lipids Health Dis ; 12: 68, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23659495

RESUMO

BACKGROUND: Alzheimer's disease (AD), the most common cause of dementia among neurodegenerative diseases, afflicts millions of elderly people worldwide. In addition to amyloid-beta (Aß) peptide and phosphorylated tau, lipid dysregulation is suggested to participate in AD pathogenesis. However, alterations in individual lipid species and their role in AD disease progression remain unclear. METHODS: We performed a lipidomic analysis using brain tissues and plasma obtained from mice expressing mutated human amyloid precursor protein (APP) and tau protein (Tg2576×JNPL3) (APP/tau mice) at 4 (pre-symptomatic phase), 10 (early symptomatic) and 15 months (late symptomatic). RESULTS: Levels of docosahexaenoyl (22:6) cholesterol ester (ChE) were markedly increased in APP/tau mice compared to controls at all stages examined. Several species of ethanolamine plasmalogens (pPEs) and sphingomyelins (SMs) showed different levels between brains from APP/tau and control mice at various stages of AD. Increased levels of 12-hydroxyeicosatetraenoic acid (12-HETE) during the early symptomatic phase were consistent with previous reports using human AD brain tissue. In addition, 19,20-dihydroxy-docosapentaenoic acid (19,20-diHDoPE) and 17,18-dihydroxy-eicosatetraenoic acid (17,18-diHETE), which are produced from docosahexaenoic acid and eicosapentaenoic acid via 19,20-epoxy-docosapentaenoic acid (19,20-EpDPE) and 17,18-epoxy-eicosatetraenoic acid (17,18-EpETE), respectively, were significantly increased in APP/tau brains during the pre-symptomatic phase, and concomitant increases occurred in plasma. Several arachidonic acid metabolites such as prostaglandin D2 (PGD2) and 15-hydroxyeicosatetraenoic acid (15-HETE), which have potential deteriorating and protective actions, respectively, were decreased in the early symptomatic phase of APP/tau mice. Significant decreases in phosphatidylcholines and PEs with polyunsaturated fatty acids were also detected in the late symptomatic phase, indicating a perturbation of membrane properties. CONCLUSION: Our results provide fundamental information on lipid dysregulation during various stages of human AD.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/biossíntese , Encéfalo/metabolismo , Proteínas tau/biossíntese , Adulto , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Araquidônico/biossíntese , Ácido Araquidônico/genética , Ésteres do Colesterol/biossíntese , Ésteres do Colesterol/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos/metabolismo , Mutação , Plasmalogênios/biossíntese , Plasmalogênios/genética , Esfingomielinas/biossíntese , Esfingomielinas/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...