Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365645

RESUMO

The lack of suitable functional groups for cell adhesion on the surface of Polycaprolactone (PCL) is one of the main limitations in order to use PCL for biomedical applications. The aim of this research is to modify the PCL film surface using arginine, via an aminolysis reaction. In this regard, after PCL films formation by casting method, they were immersed in arginine solutions of various concentration at room temperature or then heated to 40 °C and in the presence of isopropanol or without it. To assess the structure of the modified surface, its wettability, and mechanical properties, methods of measuring the contact angle and the strip tensile test were used, and to compare the degree of attachment and the rate of cell proliferation, the method of fluorescent staining of cultured cells was used. The change in protein synthesis by cells on the modified surface was assessed using Western blotting. The results obtained show that the treatment of PCL films with an aqueous solution of arginine at room temperature for 1 day increases the hydrophilicity of the surface. Wherein surface modification led to a two-fold decrease of mechanical strength and flow stress, but elongation increase by about 30% for PCL films after modification in 0.5 M aqueous arginine solution at room temperature. Moreover, cell attachment and proliferation, as well as collagen synthesis, were significantly enhanced after arginine modification. The proposed simple and effective method for modifying PCL films with arginine significantly expands the possibilities for developing biocompatible scaffolds for tissue engineering.

2.
Polymers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883637

RESUMO

Collagen in the body is exposed to a range of influences, including free radicals, which can lead to a significant change in its structure. Modeling such an effect on collagen fibrils will allow one to get a native structure in vitro, which is important for modern tissue engineering. The aim of this work is to study the effect of free radicals on a solution of hydrogen peroxide with a concentration of 0.006-0.15% on the structure of collagen fibrils in vitro, and the response of cells to such treatment. SEM measurements show a decrease in the diameter of the collagen fibrils with an increase in the concentration of hydrogen peroxide. Such treatment also leads to an increase in the wetting angle of the collagen surface. Fourier transform infrared spectroscopy demonstrates a decrease in the signal with wave number 1084 cm-1 due to the detachment of glucose and galactose linked to hydroxylysine, connected to the collagen molecule through the -C-O-C- group. During the first day of cultivating ASCs, MG-63, and A-431 cells, an increase in cell adhesion on collagen fibrils treated with H2O2 (0.015, 0.03%) was observed. Thus the effect of H2O2 on biologically relevant extracellular matrices for the formation of collagen scaffolds was shown.

3.
J Biomed Mater Res B Appl Biomater ; 109(4): 584-595, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32935912

RESUMO

Implant-associated soft tissue infections at the skin-implant interface represent the most frequent complications in reconstructive surgery and lead to implant failures and revisions. Titanium implants with deep porosity, called skin-and-bone-integrated-pylons (SBIP), allow for skin ingrowth in the morphologically natural direction, thus restoring a reliable dermal barrier and reducing the risk of infection. Silver coating of the SBIP implant surface using physical vapor deposition technique offers the possibility of preventing biofilm formation and exerting a direct antimicrobial effect during the wound healing phase. In vivo studies employing pig and rabbit dorsum models for assessment of skin ingrowth into the pores of the pylon demonstrated the safety of transcutaneous implantation of the SBIP system. No postoperative complications were reported at the end of the follow-up period of 6 months. Histological analysis proved skin ingrowth in the minipig model without signs of silver toxicity. Analysis of silver release (using energy dispersive X-ray spectroscopy) in the model of intramedullary-inserted silver-coated SBIP in New Zealand rabbits demonstrated trace amounts of silver after 3 months of in-bone implantation. In conclusion, selected temporary silver coating of the SBIP implant surface is powerful at preventing the periprosthetic infections without imparing skin ingrowth and can be considered for clinical application.


Assuntos
Materiais Revestidos Biocompatíveis , Implantes Experimentais , Prata/farmacologia , Infecções dos Tecidos Moles/prevenção & controle , Infecção da Ferida Cirúrgica/prevenção & controle , Cicatrização , Implantes Absorvíveis , Animais , Materiais Revestidos Biocompatíveis/efeitos adversos , Implantes Experimentais/efeitos adversos , Masculino , Teste de Materiais , Metaloproteinases da Matriz/análise , Microscopia Eletrônica de Varredura , Osseointegração , Porosidade , Desenho de Prótese , Coelhos , Prata/administração & dosagem , Pele/lesões , Infecções dos Tecidos Moles/etiologia , Espectrometria por Raios X , Infecção da Ferida Cirúrgica/etiologia , Suínos , Titânio , Cicatrização/efeitos dos fármacos
4.
J Biomed Mater Res B Appl Biomater ; 108(3): 1010-1021, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31369698

RESUMO

Reconstructive surgery for urethral defects employing tissue-engineered scaffolds represents an alternative treatment for urethroplasty. The aim of this study was to compare the therapeutic efficacy of the bilayer poly-D,L-lactide/poly-ε-caprolactone (PL-PC) scaffold seeded with allogenic mesenchymal stem cells (MSCs) for urethra reconstruction in a rabbit model with conventional urethroplasty employing an autologous buccal mucosa graft (BG). The inner layer of the scaffold based on poly-D,L-lactic acid (PL) was seeded with MSCs, while the outer layer, prepared from poly-ε-caprolactone, protected the surrounding tissues from urine. To track the MSCs in vivo, the latter were labeled with superparamagnetic iron oxide nanoparticles. In rabbits, a dorsal penile defect was reconstructed employing a BG or a PL-PC graft seeded with nanoparticle-labeled MSCs. In the 12-week follow-up period, no complications were detected. Subsequent histological analysis demonstrated biointegration of the PL-PC graft with surrounding urethral tissues. Less fibrosis and inflammatory cell infiltration were observed in the experimental group as compared with the BG group. Nanoparticle-labeled MSCs were detected in the urothelium and muscular layer, co-localizing with the urothelium cytokeratin marker AE1/AE3, indicating the possibility of MSC differentiation into neo-urothelium. Our results suggest that a bilayer MSCs-seeded scaffold could be efficiently employed for urethroplasty.


Assuntos
Células-Tronco Mesenquimais/citologia , Poliésteres/química , Engenharia Tecidual/instrumentação , Uretra/cirurgia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Chinchila , Condrócitos/citologia , Compostos Férricos/química , Inflamação , Bicamadas Lipídicas , Masculino , Nanopartículas Metálicas/química , Mucosa Bucal/patologia , Nanopartículas/química , Coelhos , Alicerces Teciduais/química , Transplante Homólogo , Urotélio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA