Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(1): 18-25, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38147516

RESUMO

The MD simulation package Amber offers an attractive platform to refine crystallographic structures of proteins: (i) state-of-the-art force fields help to regularize protein coordinates and reconstruct the poorly diffracting elements of the structure, such as flexible loops; (ii) MD simulations restrained by the experimental diffraction data provide an effective strategy to optimize structural models of protein crystals, including explicitly modeled interstitial solvent as well as crystal contacts. Here, we present the new crystallography module xray, released as a part of the Amber 2023 package. This module contains functions to calculate and scale structure factors (including the contributions from bulk solvent), evaluate the maximum-likelihood-type crystallographic potential, and compute its derivative forces. The X-ray functionality of Amber no longer relies on external dependencies so that the full advantage of GPU acceleration can be taken. This makes it possible to refine in a short time hundreds of crystal models, including supercell models comprised of multiple unit cells. The new automated Amber-based refinement procedure leads to an appreciable improvement in Rfree (in some cases, by as much as 0.067) as well as MolProbity scores.


Assuntos
Âmbar , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Proteínas/química , Solventes
2.
IUCrJ ; 10(Pt 1): 16-26, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598499

RESUMO

A molecular dynamics (MD)-based pipeline has been designed and implemented to emulate the entire process of collecting diffraction photographs and calculating crystallographic structures of proteins from them. Using a structure of lysozyme solved in-house, a supercell comprising 125 (5 × 5 × 5) crystal unit cells containing a total of 1000 protein molecules and explicit interstitial solvent was constructed. For this system, two 300 ns MD trajectories at 298 and 250 K were recorded. A series of snapshots from these trajectories were then used to simulate a fully realistic set of diffraction photographs, which were further fed into the standard pipeline for structure determination. The resulting structures show very good agreement with the underlying MD model not only in terms of coordinates but also in terms of B factors; they are also consistent with the original experimental structure. The developed methodology should find a range of applications, such as optimizing refinement protocols to solve crystal structures and extracting dynamics information from diffraction data or diffuse scattering.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Cristalografia , Conformação Proteica , Proteínas/química , Solventes/química
3.
IUCrJ ; 9(Pt 1): 114-133, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35059216

RESUMO

A procedure has been developed for the refinement of crystallographic protein structures based on the biomolecular simulation program Amber. The procedure constructs a model representing a crystal unit cell, which generally contains multiple protein molecules and is fully hydrated with TIP3P water. Periodic boundary conditions are applied to the cell in order to emulate the crystal lattice. The refinement is conducted in the form of a specially designed short molecular-dynamics run controlled by the Amber ff14SB force field and the maximum-likelihood potential that encodes the structure-factor-based restraints. The new Amber-based refinement procedure has been tested on a set of 84 protein structures. In most cases, the new procedure led to appreciably lower R free values compared with those reported in the original PDB depositions or obtained by means of the industry-standard phenix.refine program. In particular, the new method has the edge in refining low-accuracy scrambled models. It has also been successful in refining a number of molecular-replacement models, including one with an r.m.s.d. of 2.15 Å. In addition, Amber-refined structures consistently show superior MolProbity scores. The new approach offers a highly realistic representation of protein-protein interactions in the crystal, as well as of protein-water interactions. It also offers a realistic representation of protein crystal dynamics (akin to ensemble-refinement schemes). Importantly, the method fully utilizes the information from the available diffraction data, while relying on state-of-the-art molecular-dynamics modeling to assist with those elements of the structure that do not diffract well (for example mobile loops or side chains). Finally, it should be noted that the protocol employs no tunable parameters, and the calculations can be conducted in a matter of several hours on desktop computers equipped with graphical processing units or using a designated web service.

4.
Biochemistry ; 60(8): 584-596, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33583181

RESUMO

We report the co-crystal structure of the (catalytic Cys)-to-Ala mutant of the deubiquitinase domain of the Legionella pneumophila effector SdeA (SdeADUB) with its ubiquitin (Ub) product. Most of the intermolecular interactions are preserved in this product-bound structure compared to that of the previously characterized complex of SdeADUB with the suicide inhibitor ubiquitin vinylmethyl ester (Ub-VME), whose structure models the acyl-enzyme thioester intermediate. Nuclear magnetic resonance (NMR) titration studies show a chemical shift perturbation pattern that suggests that the same interactions also exist in solution. Isothermal titration calorimetry and NMR titration data reveal that the affinity of wild-type (WT) SdeADUB for Ub is significantly lower than that of the Cys-to-Ala mutant. This is potentially due to repulsive interaction between the thiolate ion of the catalytic Cys residue in WT SdeADUB and the carboxylate group of the C-terminal Gly76 residue in Ub. In the context of SdeADUB catalysis, this electrostatic repulsion arises after the hydrolysis of the scissile isopeptide bond in the acyl-enzyme intermediate and the consequent formation of the C-terminal carboxylic group in the Ub fragment. We hypothesize that this electrostatic repulsion may expedite the release of the Ub product by SdeADUB. We note that similar repulsive interactions may also occur in other deubiquitinases and hydrolases of ubiquitin-like protein modifiers and may constitute a fairly general mechanism of product release within this family. This is a potentially important feature for a family of enzymes that form extensive protein-protein interactions during enzyme-substrate engagement.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ubiquitinas/metabolismo , Catálise , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Conformação Proteica , Ubiquitinação
5.
Nat Commun ; 6: 8361, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26436197

RESUMO

The large majority of three-dimensional structures of biological macromolecules have been determined by X-ray diffraction of crystalline samples. High-resolution structure determination crucially depends on the homogeneity of the protein crystal. Overall 'rocking' motion of molecules in the crystal is expected to influence diffraction quality, and such motion may therefore affect the process of solving crystal structures. Yet, so far overall molecular motion has not directly been observed in protein crystals, and the timescale of such dynamics remains unclear. Here we use solid-state NMR, X-ray diffraction methods and µs-long molecular dynamics simulations to directly characterize the rigid-body motion of a protein in different crystal forms. For ubiquitin crystals investigated in this study we determine the range of possible correlation times of rocking motion, 0.1-100 µs. The amplitude of rocking varies from one crystal form to another and is correlated with the resolution obtainable in X-ray diffraction experiments.


Assuntos
Cristalização , Movimento (Física) , Polietilenoglicóis , Ubiquitina/metabolismo , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Ubiquitina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...