Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 11(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766173

RESUMO

The current paper investigates the influence of the hardware setup and parameters of a 3D printing process on the resulting sample strength obtained through fused filament fabrication (FFF) technology. Three-point bending was chosen as the strength measure for samples printed with the long side oriented along the Z-axis. A single CAD model was converted into NC-programs through the same slicing software to be run on five different desktop FFF 3D printers with filament of the same brand and color. For all the printers, the same ranges of layer thickness values from 0.1 to 0.3 mm and feed rates from 25 to 75 mm/s were planned to be varied. The first four machines considered in the study were off the shelf devices available on the market, and the fifth was a quick prototype of a desktop machine design based on the analysis of pros and cons of the four machines considered. The results of the study show that the hardware setup of a desktop 3D printer can drastically change the influence of basic technological parameters such as feed rate and layer thickness on the interlayer bonding. This means that many of the conclusions drawn from previous studies connecting the technological parameters of the FFF process with the mechanical performance of parts and samples may only be correct for specific hardware setups.

2.
Polymers (Basel) ; 11(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052329

RESUMO

The ability to form closed cavities inside the part printed is an important feature of Fused Filament Fabrication technology. A typical part consists of a dense shell bearing the primary load, filled with low-density plastic scaffold (infill). Such a constitution of the part provides in most cases appropriate strength and low weight. However, if the printed part shape includes horizontal (orthogonal to printer's Z axis) flat surfaces other than its top and bottom surface, then the shell of the part becomes interrupted, which may lead to drastic drop in the ability of the part to withstand loads. In the current study, a representative sample of a part with interrupted shell and testing apparatus is developed. Influence of shell and base thicknesses, as well as influence of the infill density on the part strength, are studied. Different approaches to the sample shape modification were applied and tested. The part shape optimization made with respect to peculiarities of Fused Filament Fabrication technology resulted in increment of the force, required to fracture the part from 483 to 1096 N and in decreased part mass from 36.9 to 30.2 g.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...