Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5758, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982085

RESUMO

Despite the significance of H2O2-metal adducts in catalysis, materials science and biotechnology, the nature of the interactions between H2O2 and metal cations remains elusive and debatable. This is primarily due to the extremely weak coordinating ability of H2O2, which poses challenges in characterizing and understanding the specific nature of these interactions. Herein, we present an approach to obtain H2O2-metal complexes that employs neat H2O2 as both solvent and ligand. SnCl4 effectively binds H2O2, forming a SnCl4(H2O2)2 complex, as confirmed by 119Sn and 17O NMR spectroscopy. Crystalline adducts, SnCl4(H2O2)2·H2O2·18-crown-6 and 2[SnCl4(H2O2)(H2O)]·18-crown-6, are isolated and characterized by X-ray diffraction, providing the complete characterization of the hydrogen bonding of H2O2 ligands including geometric parameters and energy values. DFT analysis reveals the synergy between a coordinative bond of H2O2 with metal cation and its hydrogen bonding with a second coordination sphere. This synergism of primary and secondary interactions might be a key to understanding H2O2 reactivity in biological systems.

2.
J Colloid Interface Sci ; 660: 780-791, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277835

RESUMO

Highly soluble germanium oxide,an amorphous macroreticular form of germanium oxide, was used as a precursor for the deposition of GeS2on reduced graphene oxide (rGO) through a low-temperature, wet-chemistry process. Thermal treatment of the solid provided an ultrathin rGO - supported amorphous GeS2coating. The GeS2@rGO composite was tested as a lithium ion battery (LIB) anode. Leveraging the versatility of wet chemistry processing, we employed strategies initially developed for mitigating polysulfide shuttle effects in lithium-sulfur batteries to enhance anode performance. The anode exhibited exceptional stability, surpassing 1000 cycles, with charge capacities exceeding 1220 and 870 mAh.g-1 at rates of 2 and 5 A.g-1, respectively. Performance improvements were achieved by minimizing GeS2 grain size using the non-ionic surfactant Triton X-100 during synthesis and preventing polysulfide shuttle effects through a negatively charged thick glass fiber separator, fluoroethylene carbonate additive (FEC) in EC:DEC (ethylene carbonate: diethyl carbonate) solvent, and a polyacrylic acid (PAA) binder. These cumulative modifications more than tripled the charge capacity of the germanium sulfide LIB anode. Feasibility was further demonstrated through full cell studies using a LiCoO2 counter electrode.

3.
Inorg Chem ; 62(25): 9912-9923, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37311066

RESUMO

Despite growing interest in the potential applications of p-block hydroperoxo complexes, the chemistry of inorganic hydroperoxides remains largely unexplored. For instance, single-crystal structures of antimony hydroperoxo complexes have not been reported to date. Herein, we present the synthesis of six triaryl and trialkylantimony dihydroperoxides [Me3Sb(OOH)2, Me3Sb(OOH)2·H2O, Ph3Sb(OOH)2·0.75(C4H8O), Ph3Sb(OOH)2·2CH3OH, pTol3Sb(OOH)2, pTol3Sb(OOH)2·2(C4H8O)], obtained by the reaction of the corresponding dibromide antimony(V) complexes with an excess of highly concentrated hydrogen peroxide in the presence of ammonia. The obtained compounds were characterized by single-crystal and powder X-ray diffraction, Fourier transform infrared and Raman spectroscopies, and thermal analysis. The crystal structures of all six compounds reveal hydrogen-bonded networks formed by hydroperoxo ligands. In addition to the previously reported double hydrogen bonding, new types of hydrogen-bonded motifs formed by hydroperoxo ligands were found, including infinite hydroperoxo chains. Solid-state density functional theory calculation of Me3Sb(OOH)2 revealed reasonably strong hydrogen bonding between OOH ligands with an energy of 35 kJ/mol. Additionally, the potential application of Ph3Sb(OOH)2·0.75(C4H8O) as a two-electron oxidant for the enantioselective epoxidation of olefins was investigated in comparison with Ph3SiOOH, Ph3PbOOH, t-BuOOH, and H2O2.

4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047833

RESUMO

Germanium and germanium-based compounds are widely used in microelectronics, optics, solar cells, and sensors. Recently, germanium and its oxides, nitrides, and phosphides have been studied as active electrode materials in lithium- and sodium-ion battery anodes. Herein, the newly introduced highly soluble germanium oxide (HSGO) was used as a versatile precursor for germanium-based functional materials. In the first stage, a germanium-dioxide-reduced graphene oxide (rGO) composite was obtained by complete precipitation of GeO2 nanoparticles on the GO from an aqueous solution of HSGO and subsequent thermal treatment in argon at low temperature. The composition of the composite, GeO2-rGO (20 to 80 wt.% of crystalline phase), was able to be accurately determined by the HSGO to GO ratio in the initial solution since complete deposition and precipitation were achieved. The chemical activity of germanium dioxide nanoparticles deposited on reduced graphene oxide was shown by conversion to rGO-supported germanium nitride and phosphide phases. The GeP-rGO and Ge3N4-rGO composites with different morphologies were prepared in this study for the first time. As a test case, composite materials with different loadings of GeO2, GeP, and Ge3N4 were evaluated as lithium-ion battery anodes. Reversible conversion-alloying was demonstrated in all cases, and for the low-germanium loading range (20 wt.%), almost theoretical charge capacity based on the germanium content was attained at 100 mA g-1 (i.e., 2595 vs. 2465 mAh g-1 for Ge3N4 and 1790 vs. 1850 mAh g-1 for GeP). The germanium oxide was less efficiently exploited due to its lower conversion reversibility.


Assuntos
Germânio , Lítio , Eletrodos , Íons
5.
Molecules ; 27(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557790

RESUMO

Tellurates have attracted the attention of researchers over the past decade due to their properties and as less toxic forms of tellurium derivatives. However, the speciation of Te(VI) in aqueous solutions has not been comprehensively studied. We present a study of the equilibrium speciation of tellurates in aqueous solutions at a wide pH range, 2.5-15 by 17O, 123Te, and 125Te NMR spectroscopy. The coexistence of monomeric, dimeric, and trimeric oxidotellurate species in chemical equilibrium at a wide pH range has been shown. NMR spectroscopy, DFT computations, and single-crystal X-ray diffraction studies confirmed the formation and coexistence of trimeric tellurate anions with linear and triangular structures. Two cesium tellurates, Cs2[Te4O8(OH)10] and Cs2[Te2O4(OH)6], were isolated from the solution at pH 5.5 and 9.2, respectively, and studied by single-crystal X-ray diffractometry, revealing dimeric and tetrameric tellurate anions in corresponding crystal structures.


Assuntos
Telúrio , Água , Telúrio/química , Ânions , Espectroscopia de Ressonância Magnética
6.
Inorg Chem ; 61(21): 8193-8205, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35578736

RESUMO

The synthesis, transformation, and application in catalysis of triphenyllead hydroperoxide, the first dioxygen lead complex, are described. Triphenyllead hydroperoxide is characterized by 207Pb nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and single-crystal X-ray diffraction, revealing the first one-dimensional (1D) coordination peroxo polymer. Photolytic isomorphous transformation of Ph3PbOOH yields a mixed hydroxo/superoxo crystalline structure, the first nonalkali superoxo crystalline metal salt, which is stable up to 100 °C. Upon further photolysis, another isomorphous transformation of the superoxide to hydroxide is observed. These are the first single-crystal-to-single-crystal hydroperoxide-to-superoxide and then to hydroxide transformations reported to date. Photolysis of triphenyllead hydroperoxide yields two forms of superoxide-doped crystalline structures that are distinguished by widely different characteristic relaxation times. The use of Ph3PbOOH as an easy-to-handle solid two-electron oxidant for the highly enantioselective epoxidation of olefins is described.

7.
Inorg Chem ; 59(24): 18358-18365, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33285066

RESUMO

A breakthrough "superoxide colloidal solution route" for low-temperature synthesis of barium and strontium stannate perovskites and their doped analogues was recently introduced. The synthesis starts from hydrogen peroxide-rich stannate solutions and yields a so-called "crystalline superoxide molecular cluster" that is converted by low temperature (<300 °C) to the respective perovskites. In this paper, the so-called "crystalline superoxide molecular cluster" is identified as a superoxide-free, barium trihydroxo(hydroperoxo)peroxostannate, BaSn(OH)3(OOH)(OO) phase (BHHPS). EPR and Raman spectroscopy studies reveal the absence of superoxide in this crystalline phase. FTIR of the deuterated sample, 119Sn NMR, and elemental analysis uncovered the empirical formula, H4O7SnBa with two peroxides per each tin element. Rietveld refinement of the XRD confirms the BHHPS cubic phase with replacement of the perovskite oxygen atoms by the OH- and OOH-ligands and peroxobridging groups.

8.
ACS Appl Mater Interfaces ; 12(14): 16227-16235, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32167739

RESUMO

Microencapsulation of a carbon nanotube (CNT)-loaded paraffin phase change material, PCM in a poly(melamine-formaldehyde) shell, and the respective CNT-PCM gypsum composites is explored. Although a very low level (0.001-0.1 wt %) of intramicrocapsule loading of CNT dopant does not change the thermal conductivity of the solid, it increases the measured effusivity and thermal buffering performance during phase transition. The observed effusivity of 0.05 wt % CNT-doped PCM reaches 4000 W s-0.5 m-2 K-1, which is higher than the reported effusivity of alumina and alumina bricks and an order of magnitude larger than the solid, CNT-free PCM powder. The CNT dopant (0.015 wt %) in a 30 wt % PCM-plaster composite improved the effusivity by 60% compared to the CNT-free composite, whereas the addition of the same amount of CNTs to the bulk of the plaster does not improve either the effusivity or the thermal buffering performance of the composite. The thermal enhancement is ascribed to a CNT network formation within the paraffin core.

9.
Inorg Chem ; 58(3): 1905-1911, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30649865

RESUMO

High, nearly 100%, yield synthesis of ammonium peroxogermanate (APG), (NH4)6[Ge6(µ-OO)6(µ-O)6(OH)6]·6H2O, is presented, and its crystal structure is determined by single crystal X-ray study. It comprises centrosymmetric hexanuclear peroxogermanate anions [Ge6(µ-OO)6(µ-O)6(OH)6]6- with six µ-oxo- and six µ-peroxo groups forming negatively charged layers. The space between these layers is filled by ammonium cations and water molecules, forming a highly stable structure due to hydrogen bonding. Highly soluble macroporous amorphous germanium oxide (HSGO) is then synthesized by mild treatment of APG. The compound forms highly oversaturated metastable germanium oxide solution with a solubility of 100 g/L, over 20 times higher than the solubility of amorphous germanium oxide. HSGO solution is a versatile reagent that can react with basic and acidic reagents to give a diverse range of salts including, e.g., germanium sulfide, germanium hydrophosphate, and potassium germanate. In the absence of acid or base, the aqueous HSGO solution yields hexagonal germanium oxide under ambient conditions.

10.
Langmuir ; 34(8): 2741-2747, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29425458

RESUMO

Formation of vanadium oxide nanofilm-coated graphene oxide (GO) is achieved by thermally induced explosive disintegration of a microcrystalline ammonium peroxovanadate-GO composite. GO sheets isolate the microcrystalline grains and capture and contain the microexplosion products, resulting in the deposition of the nanoscale products on the GO. Thermal treatment of the supported nanofilm yields a sequence of nanocrystalline phases of vanadium oxide (V3O7, VO2) as a function of temperature. This is the first demonstration of microexplosive disintegration of a crystalline peroxo compound to yield a nanocoating. The large number of recently reported peroxide-rich crystalline materials suggests that the process can be a useful general route for nanofilm formation. The V3O7@GO composite product was tested as a sodium ion battery anode and showed high charge capacity at high rate charge-discharge cycling (150 mAh g-1 at 3000 mA g-1 vs 300 mAh g-1 at 100 mA g-1) due to the nanomorphology of the vanadium oxide.

11.
J Colloid Interface Sci ; 512: 165-171, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29059549

RESUMO

High-charge-capacity sodium-ion battery anodes made of Sb2Te3@reduced graphene oxide are reported for the first time. Uniform nano-coating of graphene oxide is carried out from common sol of peroxotellurate and peroxoantimonate under room temperature processing. Reduction by hydrazine under glycerol reflux yields Sb2Te3@reduced graphene oxide. The electrodes exhibit exceptionally high volumetric charge capacity, above 2300mAhcm-3 at 100mAg-1 current density, showing very good rate capabilities and retaining 60% of this capacity even at 2000mAg-1. A comparison of sodiation and lithiation shows that lithiation exhibits better volumetric charge capacity, but surprisingly only marginally better relative rate capability retention at 2000mAg-1. Tellurium-based electrodes are attractive due to the high volumetric charge capacity of Te, its very high electric conductivity, and the low relative expansion upon lithiation/sodiation.

12.
Dalton Trans ; 46(46): 16171-16179, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182693

RESUMO

Sodium peroxostannate nanoparticles with graded composition were produced from aqueous hydrogen peroxide-sodium hydroxostannate solution. The uniform particles were converted to composition graded sodium stannate by mild thermal treatment for peroxide decomposition and yielded yolk-shell tin dioxide particles by dilute acid treatment. The mechanism of formation of the graded sodium concentration is explained in view of the solubility of peroxostannate in H2O2-H2O solution and based on 119Sn NMR, XRD, dynamic light scattering (DLS) and electron microscopy studies. Initial studies illuminating sensitive hydrogen sensing by yolk-shell tin oxide particles are presented.

13.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 11): 1666-1669, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29152346

RESUMO

The title adduct, C14H13NO·H2O2, consists of (Z)-N-benzyl-idene-1-phenyl-methanamine oxide and hydrogen peroxide mol-ecules in a 1:1 ratio. The organic coformer adopts a skew geometry with an inter-aryl-ring dihedral angle of 81.9 (2)°. In the crystal, the organic and peroxide mol-ecules are linked through both peroxide O-H donor groups to oxide O-atom acceptors, giving one-dimensional chains extending along the b axis. Present also are weak inter-molecular C-H⋯O hydrogen-bonding inter-actions.

14.
Chem Commun (Camb) ; 53(59): 8272-8275, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28657100

RESUMO

An anode material incorporating a sulfide is reported. SnS2 nanoparticles anchored onto reduced graphene oxide are produced via a chemical route and demonstrate an impressive capacity of 350 mA h g-1, exceeding the capacity of graphite. These results open the door for a new class of high capacity anode materials (based on sulfide chemistry) for potassium-ion batteries.

15.
ACS Appl Mater Interfaces ; 9(10): 9152-9160, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28233974

RESUMO

A peroxogermanate thin film was deposited in high yield at room temperature on graphene oxide (GO) from peroxogermanate sols. The deposition of the peroxo-precursor onto GO and the transformations to amorphous GeO2, crystalline tetragonal GeO2, and then to cubic elemental germanium were followed by electron microscopy, XRD, and XPS. All of these transformations are influenced by the GO support. The initial deposition is explained in view of the sol composition and the presence of GO, and the different thermal transformations are explained by reactions with the graphene support acting as a reducing agent. As a test case, the evaluation of the different materials as lithium ion battery anodes was carried out revealing that the best performance is obtained by amorphous germanium oxide@GO with >1000 mAh g-1 at 250 mA g-1 (between 0 and 2.5 V vs Li/Li+ cathode), despite the fact that the material contained only 51 wt % germanium. This is the first demonstration of the peroxide route to produce peroxogermanate thin films and thereby supported germanium and germanium oxide coatings. The advantages of the process over alternative methodologies are discussed.

16.
Chemistry ; 22(9): 2980-6, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26756198

RESUMO

Tellurium-peroxo complexes in aqueous solutions have never been reported. In this work, ammonium peroxotellurates (NH4 )4 Te2 (µ-OO)2 (µ-O)O4 (OH)2 (1) and (NH4 )5 Te2 (µ-OO)2 (µ-O)O5 (OH)⋅1.28 H2 O⋅0.72 H2 O2 (2) were isolated from 5 % hydrogen peroxide aqueous solutions of ammonium tellurate and characterized by single-crystal and powder X-ray diffraction analysis, by Raman spectroscopy and thermal analysis. The crystal structure of 1 comprises ammonium cations and a symmetric binuclear peroxotellurate anion [Te2 (µ-OO)2 (µ-O)O4 (OH)2 ](4-) . The structure of 2 consists of an unsymmetrical [Te2 (µ-OO)2 (µ-O)O5 (OH)](5-) anion, ammonium cations, hydrogen peroxide, and water. Peroxotellurate anions in both 1 and 2 contain a binuclear Te2 (µ-OO)2 (µ-O) fragment with one µ-oxo- and two µ-peroxo bridging groups. (125) Te NMR spectroscopic analysis shows that the peroxo bridged bitellurate anions are the dominant species in solution, with 3-40 %wt H2 O2 and for pH values above 9. DFT calculations of the peroxotellurate anion confirm its higher thermodynamic stability compared with those of the oxotellurate analogues. This is the first direct evidence for tellurium-peroxide coordination in any aqueous system and the first report of inorganic tellurium-peroxo complexes. General features common to all reported p-block element peroxides could be discerned by the characterization of aqueous and crystalline peroxotellurates.

17.
Anal Chem ; 87(19): 9567-71, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26334692

RESUMO

A novel composite material for the encapsulation of redox enzymes was prepared. Reduced graphene oxide film with adsorbed phenothiazone was used as a highly efficient composite for electron transfer between flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase and electrodes. Measured redox potential for glucose oxidation was lower than 0 V vs Ag/AgCl electrode. The fabricated biosensor showed high sensitivity of 42 mA M(-1) cm(-2), a linear range of glucose detection of 0.5-12 mM, and good reproducibility and stability as well as high selectivity for different interfering compounds. In a semibiofuel cell configuration, the hybrid film generated high power output of 345 µW cm(-2). These results demonstrate a promising potential for this composition in various bioelectronic applications.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Flavina-Adenina Dinucleotídeo/metabolismo , Glucose 1-Desidrogenase/metabolismo , Glucose/análise , Grafite/química , Óxidos/química , Fenotiazinas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Eletrodos , Glucose/metabolismo , Grafite/metabolismo , Oxirredução , Óxidos/metabolismo , Fenotiazinas/metabolismo
18.
Inorg Chem ; 54(16): 8058-65, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26241061

RESUMO

Potassium (K6[Ge6(µ-OO)6(µ-O)6(OH)6]·14H2O, 1), cesium ammonium (Cs4.2(NH4)1.8[Ge6(µ-OO)6(µ-O)6(OH)6]·8H2O, 2), and potassium ammonium (K2.4(NH4)3.6[Ge6(µ-OO)6(µ-O)6(OH)6]·6H2O, 3) peroxogermanates were isolated from 3% hydrogen peroxide aqueous solutions of the corresponding hydroxogermanates and characterized by single crystal and powder X-ray diffraction studies and by Raman spectroscopy and thermal analysis. The crystal structure of all three compounds consists of cations of potassium and/or ammonium and cesium, water molecules, and centrosymmetric hexanuclear peroxogermanate anion [Ge6(µ-OO)6(µ-O)6(OH)6](6-) with six µ-oxo- and six µ-peroxo groups. Peroxogermanates demonstrate relatively high thermal stability: the peroxide remains in the structure even after water release after heating to 100-120 °C. DFT calculations of the peroxogermanate [Ge6(µ-OO)6(µ-O)6(OH)6](6-) anion confirm its higher thermodynamic stability compared to the hydroperoxo- and oxogermanate analogues.

19.
Acta Crystallogr C ; 68(Pt 3): i20-4, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22382531

RESUMO

Diammonium carbonate hydrogen peroxide monosolvate, 2NH(4)(+)·CO(3)(2-)·H(2)O(2), (I), and dicaesium carbonate hydrogen peroxide trisolvate, 2Cs(+)·CO(3)(2-)·3H(2)O(2), (II), were crystallized from 98% hydrogen peroxide. In (I), the carbonate anions and peroxide solvent molecules are arranged on twofold axes. The peroxide molecules act as donors in only two hydrogen bonds with carbonate groups, forming chains along the a and c axes. In the structure of (II), there are three independent Cs(+) ions, two of them residing on twofold axes, as are two of the four peroxide molecules, one of which is disordered. Both structures comprise complicated three-dimensional hydrogen-bonded networks.

20.
Inorg Chem ; 49(20): 9110-2, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20863083

RESUMO

A generic method for conductive film coating of minerals and acid-sensitive materials by antimony-doped tin oxide (ATO) is introduced. The coating was performed from a hydrogen peroxide stabilized stannate and antimonate precursor solution. This is the first demonstration of ATO coating from an organic ligand-free solution. Uniform coating of different clays and other irregular configurations by monosized 5 nm ATO particles was demonstrated. The deposition mechanism and the observed preference for mineral surface coating over homogeneous agglomeration of the tin oxide particles are explained by a hydrogen peroxide capping mechanism and hydrogen bonding of the hydroperoxo nanoparticles to the H(2)O(2)-activated mineral surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...