Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(16): 164307, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34717353

RESUMO

Kinetics of ozone destruction due to the recombination of oxygen atoms produced by pulsed 266 nm laser photolysis of O3/M (M = CO2 and/or N2) mixtures was studied using the absorption and emission spectroscopy to follow time evolutions of O3 and electronically excited molecules O2* formed in the recombination process 2O(3P) + M → O2* + M. An unexpected high ozone destruction rate was observed when O2* was present in the system. The kinetic model developed for the oxygen nightglow on the terrestrial planets was adapted to interpret the detected temporal profiles of the ozone number density and the O2* emission intensities. It was deduced that the vibrationally excited singlet delta oxygen molecule O2(a1Δ, υ) formed in the secondary processes reacts efficiently with ozone in the process O2(a1Δ, υ ≥ 3) + O3 → 2O2 + O, and the rate constant of this process was estimated to be 3 × 10-11 cm3 s-1. Ab initio calculations at the CASPT2(14, 12)/cc-pVTZ/UωB97XD/cc-pVTZ level of theory were applied to find the reaction pathway from the reactants to products on the O5 potential energy surface. These calculations revealed that the O2(a1Δ) + O3 reaction is likely to proceed via singlet-triplet intersystem crossing exhibiting an energy barrier of 9.6 kcal/mol, which lies between two and three quanta of vibrational excitation of O2(a1Δ), and hence, O2(a1Δ, υ) with υ ≥ 3 could rapidly react with ozone.

2.
J Chem Phys ; 151(22): 224306, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837673

RESUMO

Potential energy curves for all states arising from the interaction of He with the 3p6, 3p54s, and 3p54p configurations of Ar have been determined using high-level electronic structure calculations. The results have been used to examine collisional energy transfer probabilities and spectral line shape parameters (shifting and broadening rate coefficients). The main focus has been on states and transitions that are of relevance to optically pumped He/Ar* laser systems. The line shape predictions were found to be in good agreement with experimental data, while there is notable disagreement for the energy transfer probabilities. The experimental data are found to be at variance with the predictions of standard two-state curve crossing models for energy transfer.

3.
Phys Chem Chem Phys ; 20(47): 29677-29683, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30474096

RESUMO

Rate constants for singlet oxygen collision induced emission of the a1Δg-X3Σ-g transition at 1.27 µm were measured for CO2, N2, SF6, and rare gases as collisional partners. Photolysis of ozone by 266 nm laser radiation produced singlet oxygen. We performed direct measurements of pressure dependences of the 1.27 µm emission intensity for partner gases. The measured rate constants kMa-X in the units of 10-24 cm3 s-1 are as follows: CO2 - 10 ± 2; N2 - 3.2 ± 0.6; SF6 - 7 ± 1; He - 1.1 ± 0.3; Ne - 1.3 ± 0.3; Ar - 2.8 ± 0.6; Kr - 6 ± 1. The measured values of kMa-X are close to the values calculated from absorption measurements. Considering the known rate constants kMb-a for the b1Σg+-a1Δg transition in the gas phase we found that the ratio kMa-X/kMb-a was constant and independent of a collisional partner according to the "spin-orbit based" mechanism of intensity borrowing proposed by Minaev (THEOCHEM, 1989, 183, 207). However, this ratio amounted to (1.3 ± 0.2) × 10-4, which is considerably lower than the theoretically predicted value of (3-6) × 10-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...