Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 128(5): 772-6, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16995765

RESUMO

The mass density, Young's modulus (E), tangent modulus (Et), and yield stress (sigma y) of the human ribs, sternum, internal organs, and muscles play important roles when determining impact responses of the chest associated with pendulum impact. A series of parametric studies was conducted using a commercially available three-dimensional finite element (FE) model, Total HUman Model for Safety (THUMS) of the whole human body, to determine the effect of changing these material properties on the predicted impact force, chest deflection, and the number of rib fractures and fractured ribs. Results from this parametric study indicate that the initial chest apparent stiffness was mainly influenced by the stiffness and mass density of the superficial muscles covering the torso. The number of rib fractures and fractured ribs was primarily determined by the stiffness of the ribcage. Similarly, the stiffness of the ribcage and internal organs contributed to the maximum chest deflection in frontal impact, while the maximum chest deflection for lateral impact was mainly affected by the stiffness of the ribcage. Additionally, the total mass of the whole chest had a moderately effect on the number of rib fractures.


Assuntos
Imageamento Tridimensional/métodos , Modelos Biológicos , Movimento/fisiologia , Estimulação Física/métodos , Tórax/fisiologia , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Humanos , Estresse Mecânico
2.
Stapp Car Crash J ; 50: 509-44, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17311175

RESUMO

Injuries of the human brain and spinal cord associated with the central nervous system (CNS) are seen in automotive accidents. CNS injuries are generally categorized into severe injuries (AIS 3+). However, it is not clear how the restraint conditions affect the CNS injuries. This paper presents a newly developed three-dimensional (3D) finite element head-neck model in order to investigate the biomechanical responses of the brain-spinal cord complex. The head model consists of the scalp, skull, and a detailed description of the brain including the cerebrum, cerebellum, brainstem with distinct white and gray matter, cerebral spinal fluid (CSF), sagittal sinus, dura, pia, arachnoid, meninx, falx cerebri, and tentorium. Additionally, the neck model consists of the cervical vertebral bodies, intervertebral discs, muscles, ligaments, spinal cord with white and gray matter, cervical pia, and CSF. The two models were linked together to construct a finite element (FE) model of the brain-spinal cord complex. The material stiffness and failure properties of porcine cervical pia mater were measured from uniaxial tensile tests with various strain rates at Yamaguchi University. The head-neck model was validated against three sets of brain test data obtained by Nahum et al. (1977), Trosseille et al. (1992), and Hardy et al. (2001) and two sets of neck test data obtained from Thunnissen et al. (1995) and Pintar et al. (1995). Additionally, a series of parametric studies were conducted to investigate the effects of restraint conditions on CNS injuries. The injury criteria for brain injuries were based on Cumulative Strain Damage Measure, while those for spinal cord injuries were based on the ultimate strains of the spinal cord and pia mater. It was found that the brain-spinal cord model was useful to investigate the relationship between the restraint conditions and CNS injuries.


Assuntos
Aceleração/efeitos adversos , Acidentes de Trânsito , Lesões Encefálicas/fisiopatologia , Modelos Biológicos , Estimulação Física/efeitos adversos , Medição de Risco/métodos , Traumatismos da Medula Espinal/fisiopatologia , Lesões Encefálicas/etiologia , Simulação por Computador , Análise de Elementos Finitos , Cabeça/fisiopatologia , Humanos , Movimento , Pescoço/fisiopatologia , Fatores de Risco , Traumatismos da Medula Espinal/etiologia
3.
Stapp Car Crash J ; 49: 117-31, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17096271

RESUMO

Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices. The purposes of this study are first to understand the kinematics of the knee joint during flexion, and second to characterize the mechanics of the knee joint under anterior-posterior loading. A finite element model of the knee joint, extracted from the Total Human Model for Safety (THUMS), was used to analyze the mechanism. The model was validated against kinematics and mechanical responses of the human knee joint. By tracking the relative positions and angles between the patella and the tibia in a knee flexing simulation, the magnitude of the tibial anterior protuberance was described as a function of the knee joint angle. The model revealed that the mechanics of the knee joint was characterized as a combination of stiffness of the patella-femur structure and the PCL It was also found that the magnitude of the tibial anterior protuberance determined the amount of initial stretch of the PCL in anterior-posterior loading. Based on the knee joint kinematics and mechanics, an interference boundary was proposed for different knee flexion angles, so as not to directly load the anterior protuberance of the tibial plateau in restraining of the knee. A frontal crash simulation was performed using a partial vehicle model with the THUMS seated. The performance and effects of the knee airbag, as one of the candidates for knee restraint devices, were evaluated through the simulation.

4.
Stapp Car Crash J ; 49: 133-56, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17096272

RESUMO

The most severe ankle skeletal injury called pilon fractures can cause long term disability and impairment. Based on previous experimental studies, the pilon fractures are regarded as caused by a high-energy compressive force in the ankle joint and affected by a muscular tension force generated by emergency braking. However, quantitative injury criteria for the pilon fractures are still unknown. More accurate prediction of bone fractures in the distal tibia using a FE model of human lower leg can help us know the quantitative injury criteria. Therefore we newly proposed an anisotropic inelastic constitutive model of cortical bone including damage evolution and then implemented it to a FE code, LS-DYNA. The proposed model successfully reproduced most of anisotropy, strain rate dependency, and asymmetry of tension and compression on material and failure properties of human femoral cortical bone. However, the simplified model using an isotropic elasto-viscoplastic material, which has been used in previous studies, did not reproduce the characteristic features of the cortical bone. Two series of validation on axial impact cadaver tests for the foot and ankle indicate that the proposed model predicts the pilon fractures more accurately than the simplified model. Parametric studies on footwell impacts and pedal impacts for the foot using the proposed model show that the severity of the pilon fractures increases when the foot sustains normal and heel impacts with the impact velocity of 5 m/s and the pedal hits the forefoot with the impact velocity of 3 m/s regardless of the muscular tension force.

5.
Stapp Car Crash J ; 49: 251-69, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17096277

RESUMO

Several three-dimensional (3D) finite element (FE) models of the human body have been developed to elucidate injury mechanisms due to automotive crashes. However, these models are mainly focused on 50(th) percentile male. As a first step towards a better understanding of injury biomechanics in the small female, a 3D FE model of a 5(th) percentile female human chest (FEM-5F) has been developed and validated against experimental data obtained from two sets of frontal impact, one set of lateral impact, two sets of oblique impact and a series of ballistic impacts. Two previous FE models, a small female Total HUman Model for Safety (THUMS-AF05) occupant version 1.0Beta (Kimpara et al. 2002) and the Wayne State University Human Thoracic Model (WSUHTM, Wang 1995 and Shah et al. 2001) were integrated and modified for this model development. The model incorporated not only geometrical gender differences, such as location of the internal organs and structure of the bony skeleton, but also the biomechanical differences of the ribs due to gender. It includes a detailed description of the sternum, ribs, costal cartilage, thoracic spine, skin, superficial muscles, intercostal muscles, heart, lung, diaphragm, major blood vessels and simplified abdominal internal organs and has been validated against a series of six cadaveric experiments on the small female reported by Nahum et al. (1970), Kroell et al. (1974), Viano (1989), Talantikite et al. (1998) and Wilhelm (2003). Results predicted by the model were well-matched to these experimental data for a range of impact speeds and impactor masses. More research is needed in order to increase the accuracy of predicting rib fractures so that the mechanisms responsible for small female injury can be more clearly defined.

6.
Traffic Inj Prev ; 4(4): 345-54, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14630583

RESUMO

In vehicle-pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.


Assuntos
Acidentes de Trânsito , Automóveis , Traumatismos do Joelho/epidemiologia , Fenômenos Biomecânicos , Ligamentos Colaterais/lesões , Simulação por Computador , Desenho de Equipamento , Análise de Elementos Finitos , Fraturas Ósseas/fisiopatologia , Humanos , Articulação do Joelho/fisiopatologia , Traumatismos da Perna/fisiopatologia , Ligamento Colateral Médio do Joelho/lesões , Suporte de Carga
7.
Shokuhin Eiseigaku Zasshi ; 43(1): 1-5, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11998312

RESUMO

The mussel Mytilus edulis and the cultured ark shell Anadara broughtonii in the southeast coasts of the Seto Inland Sea were contaminated with paralytic shellfish poison (PSP) following the appearance of the dinoflagellate Alexandrium tamiyavanichii in early December 1999. A. tamiyavanichii plankton collected around the Straits of Naruto on December 3, 1999 showed PSP toxicity, of which 83 mol% was accounted for by GTX2, GTX3 and GTX4. Its specific toxicity was 112.5 fmol/cell, and one MU was equivalent to 7,200 cells. Toxicity values at the beginning of toxification were 4.7 MU/g for the ark shell and 7.3 MU/g for the mussel. In the former, the value remained at almost 4 MU/g, resulting in prohibition of marketing for about two months. In the latter, it sharply decreased to less than 4 MU/g. These bivalves collected during the toxification period were dissected into five tissues, mantle, adductor muscle, hepatopancreas, gills and "others", and submitted to high-performance liquid chromatography (HPLC). The cultured ark shell accumulated GTX2, GTX3 and STX as major components and GTX1, GTX4, GTX5, neoSTX, dcSTX and PX1-3 (C1-C3) as minor ones. The amount of GTX3 decreased with time, while STX tended to increase. At the early stage of PSP toxification, toxins were accumulated in the gills and "others", most of which were quickly detoxified. On the other hand, PSP of the toxified mussel consisted of GTX4 as a main component, and GTX1, GTX2, GTX3, GTX5, STX and PX1-2 (C1-C2) as minor ones. Its toxin composition pattern was similar to that of the ingested causative plankton. Its total toxin decreased soon after disappearance of the dinoflagellate. During the decrease of toxicity, PSP tended to be retained in the hepatopancreas, resulting in accumulation of 50 mol% of total toxin.


Assuntos
Bivalves , Dinoflagellida , Intoxicação por Frutos do Mar , Animais , Bivalves/química , Bivalves/microbiologia , Cromatografia Líquida de Alta Pressão , Japão , Saxitoxina/análise , Frutos do Mar/análise , Frutos do Mar/microbiologia
8.
Stapp Car Crash J ; 46: 55-69, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17096218

RESUMO

Typical automotive related abdominal injuries occur due to contact with the rim of the steering wheel, seatbelt and armrest, however, the rate is less than in other body regions. When solid abdominal organs, such as the liver, kidneys and spleen are involved, the injury severity tends to be higher. Although sled and pendulum impact tests have been conducted using cadavers and animals, the mechanical properties and the tissue level injury tolerance of abdominal solid organs are not well characterized. These data are needed in the development of computer models, the improvement of current anthropometric test devices and the enhancement of our understanding of abdominal injury mechanisms. In this study, a series of experimental tests on solid abdominal organs was conducted using porcine liver, kidney and spleen specimens. Additionally, the injury tolerance of the solid organs was deduced from the experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...