Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893965

RESUMO

The surface modification of dental implants plays an important role in establishing a successful interaction of the implant with the surrounding tissue, as the bioactivity and osseointegration properties are strongly dependent on the physicochemical properties of the implant surface. A surface coating with bioactive molecules that stimulate the formation of a mineral calcium phosphate (CaP) layer has a positive effect on the bone bonding process, as biomineralization is crucial for improving the osseointegration process and rapid bone ingrowth. In this work, the spontaneous deposition of calcium phosphate on the titanium surface covered with chemically stable and covalently bound alendronate molecules was investigated using an integrated experimental and theoretical approach. The initial nucleation of CaP was investigated using quantum chemical calculations at the density functional theory (DFT) level. Negative Gibbs free energies show a spontaneous nucleation of CaP on the biomolecule-covered titanium oxide surface. The deposition of calcium and phosphate ions on the alendronate-modified titanium oxide surface is governed by Ca2+-phosphonate (-PO3H) interactions and supported by hydrogen bonding between the phosphate group of CaP and the amino group of the alendronate molecule. The morphological and structural properties of CaP deposit were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy. This integrated experimental-theoretical study highlights the spontaneous formation of CaP on the alendronate-coated titanium surface, confirming the bioactivity ability of the alendronate coating. The results provide valuable guidance for the promising forthcoming advancements in the development of biomaterials and surface modification of dental implants.

2.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837289

RESUMO

Bronze cultural heritage in urban areas is susceptible to decay due to the significant amount of pollutants present in the air. This causes the dissolution of bronze and the patina on its surface. The efficient protection of outdoor bronze cultural heritage is still an unresolved problem. The aim of this work is to investigate 16-phosphonohexadecanoic acid as an environmentally friendly and non-toxic corrosion inhibitor for patinated bronze. The corrosion protection of sulphide-patinated bronze by phosphonic acid alone and in combination with acrylic coating Paraloid B-72 is examined. In order to achieve efficient corrosion protection, various parameters of the phosphonic acid application were studied. The efficiency of protection is examined by electrochemical impedance spectroscopy (EIS) during the immersion in simulated acid rain solution and after exposure to a corrosion chamber. It was found that the studied phosphonic acid provides corrosion protection to patinated bronze and significantly improves the protective properties of Paraloid B72. This was also confirmed by scanning electron microscopy (SEM) examination of the coating surface after exposure to a corrosive environment.

3.
Materials (Basel) ; 14(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923924

RESUMO

Polluted urban environment enhances dissolution of patina and underlying bronze material of recent and historical bronze sculptures exposed outdoors. In this work, two bronze statues, situated in one of the most polluted Croatian cities, were examined in order to characterize composition of patina and its electrochemical stability. The composition of patina on several positions on each sculpture was determined by EDS, Raman spectroscopy, and FTIR measurements. Electrochemical impedance spectroscopy measurements were conducted in order to evaluate the corrosion stability of both patina and underlying bronze. Results obtained in this work show that the two examined bronze sculptures were covered with patina layer that was mainly composed of copper sulfides and sulphates, which is in accordance with the high concentrations of H2S and SO2 in the atmosphere. However, the variations in the appearance of FTIR and Raman spectra revealed that the amount of each species differed from spot to spot, as well as the fact that other compounds, such as carbonates, were present at some areas. This difference in patina composition was reflected in electrochemical behavior as observed by electrochemical impedance spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...