Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 74(1): 6-9, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28070677

RESUMO

The Watson River drains a portion of the SW Greenland ice sheet, transporting microbial communities from subglacial environments to a delta at the head of Søndre Strømfjord. This study investigates the potential activity and community shifts of glacial microbiota deposited and buried under layers of sediments within the river delta. A long-term (12-month) incubation experiment was established using Watson River delta sediment under anaerobic conditions, with and without CO2/H2 enrichment. Within CO2/H2-amended incubations, sulphate depletion and a shift in the microbial community to a 52% predominance of Desulfosporosinus meridiei by day 371 provides evidence for sulphate reduction. We found evidence of methanogenesis in CO2/H2-amended incubations within the first 5 months, with production rates of ~4 pmol g-1 d-1, which was likely performed by methanogenic Methanomicrobiales- and Methanosarcinales-related organisms. Later, a reduction in methane was observed to be paired with the depletion of sulphate, and we hypothesise that sulphate reduction out competed hydrogenotrophic methanogenesis. The structure and diversity of the original CO2/H2-amended incubation communities changed dramatically with a major shift in predominant community members and a decline in diversity and cell abundance. These results highlight the need for further investigations into the fate of subglacial microbiota within downstream environments.


Assuntos
Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Microbiota , Rios/microbiologia , Groenlândia , Metano , Methanomicrobiales , Methanosarcinales , Peptococcaceae , Sulfatos
2.
Environ Microbiol ; 19(2): 524-534, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27489963

RESUMO

Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 104 cells mL-1 and we estimate that ∼1.02 × 1021 cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river-transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world.


Assuntos
Camada de Gelo/microbiologia , Rios/microbiologia , Actinobacteria/isolamento & purificação , Archaea/isolamento & purificação , Bacteroidetes/isolamento & purificação , Estuários , Groenlândia , Microbiota , Proteobactérias/isolamento & purificação , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...