Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34943274

RESUMO

Viral infections induce extracellular vesicles (EVs) containing viral material and inflammatory factors. Exosomes can easily cross the blood-brain barrier during respiratory tract infection and transmit the inflammatory signal to the brain; however, such a hypothesis has no experimental evidence. The study investigated whether exosome-like vesicles (ELVs) from virus mimetic poly (I:C)-primed airway cells enter the brain and interact with brain immune cells microglia. Airway cells were isolated from Wistar rats and BALB/c mice; microglial cell cultures-from Wistar rats. ELVs from poly (I:C)-stimulated airway cell culture medium were isolated by precipitation, visualised by transmission electron microscopy, and evaluated by nanoparticle analyser; exosomal markers CD81 and CD9 were determined by ELISA. For in vitro and in vivo tracking, particles were loaded with Alexa Fluor 555-labelled RNA. Intracellular reactive oxygen species (ROS) were evaluated by DCFDA fluorescence and mitochondrial superoxide-by MitoSOX. ELVs from poly (I:C)-primed airway cells entered the brain within an hour after intranasal introduction, were internalised by microglia and induced intracellular and intramitochondrial ROS production. There was no ROS increase in microglial cells was after treatment with ELVs from airway cells untreated with poly (I:C). In addition, poly (I:C)-primed airway cells induced inflammatory cytokine expression in the brain. The data indicate that ELVs secreted by virus-primed airway cells might enter the brain, cause the activation of microglial cells and neuroinflammation.

2.
Plants (Basel) ; 10(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067195

RESUMO

Echinacea purpurea L. (Moench) is used in traditional and conventional medicine. However, there is lack of data on the biological activities of primary plant metabolite lectins. The aim of our experiment was to find out how lectin LysM (lysine motif), which was previously purified, affects the immune response in vivo. Eight-week-old BALB/c male mice (n = 15) received four weekly 250 µg/kg peritonial injections of purified Echinacea purpurea L. (Moench) roots' LysM lectin. The control animal group (n = 15) received 50 µL peritoneal injections of fresh Echinacea purpurea L. (Moench) root tincture, and the negative control animal group (n = 15) received 50 µL peritoneal injections of physiological solution. At the fifth experimental week, the animals were sedated with carbon dioxide, and later euthanized by cervical dislocation, and then their blood and spleen samples were collected. The leukocytes' formula and lymphocytes' count was estimated in blood samples, the T lymphocytes' density was evaluated in spleen zones. A statistically significant (p < 0.05) difference between each group was observed in the leukocytes' formula (monocytes' percentage, also little, medium and giant size lymphocytes). The purple coneflower fresh roots' tincture significantly decreased (p < 0.05) the T lymphocytes' quantity in peritoneal lymphoid sheaths (PALS) compared with the physiological solution injection's group (p < 0.05) and the lectin injection's group (p < 0.001). Meanwhile, lectin injections caused a significant (p < 0.01) increase in the T lymphocytes in a spleen PALS zone, compared with the physiological solution and tincture injection's group. Our data suggests that LysM lectin acts as an immunostimulant, while fresh purple coneflower tincture causes immunosuppression.

3.
Toxins (Basel) ; 12(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32013058

RESUMO

Echinacea purpurea (L.) Moench (EP) is a well-studied plant used for health benefits. Even though there are a lot of data on EP secondary metabolites, its active proteins are not studied well enough. The aim of our experiment was to purify lectin fraction from EP roots and evaluate its biological activity in vitro as well as its effect on kidney morphology in vivo. An EP root glycoprotein fraction was purified by affinity chromatography, identified by LC-MS/MS, and used for biological activity tests in vitro and in vivo. Identified glycoproteins were homologous with the LysM domain containing lectins from the Asteraceae plants Helianthus annuus L., Lactuca sativa L., Cynara cardunculus L. A purified fraction was tested by hemagglutination and hemagglutination inhibition (by carbohydrate reactions) in vitro. We purified the hemagglutinating active ~40 kDa size lactose, D-mannose, and D-galactose specific glycoproteins with two peptidoglycan binding LysM (lysine motif) domains. Purified LysM lectin was tested in vivo. Eight-week old Balb/C male mice (n = 15) were treated with 5 µg of the purified lectin. Injections were repeated four times per week. At the fifth experimental week, animals were sedated with carbon dioxide, then euthanized by cervical dislocation and their kidney samples were collected. Morphological changes were evaluated in hematoxylin and eosin stained kidney samples. The purified LysM lectin induced a statistically significant (p < 0.05) kidney glomerular vacuolization and kidney tubular necrosis (p < 0.001).


Assuntos
Echinacea , Rim/efeitos dos fármacos , Lectinas de Plantas/toxicidade , Animais , Echinacea/genética , Eritrócitos/efeitos dos fármacos , Hemaglutinação/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Raízes de Plantas , Coelhos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...