Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 32(4): 799-803, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7763475

RESUMO

We recently published the primary structure and inhibition data of the barley grain aspartic proteinase (HvAP, Hordeum vulgare aspartic proteinase) which revealed similarity to mammalian cathepsin D and yeast aspartic proteinase A. Here we present evidence, based on Km and kcat values for the enzyme as well as on its cleavage sites in haemoglobin, the insulin B-chain, glucagon and melittin, that the similarity extends to its hydrolytic specificity. Like the animal and microbial aspartic proteinases, HvAP preferentially cleaves peptide bonds between amino acid residues with large hydrophobic side chains. The narrow hydrolytic specificity of HvAP suggests that plant aspartic proteinases may perform regulatory functions by limited proteolysis.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Catepsinas/metabolismo , Hordeum/enzimologia , Sequência de Aminoácidos , Animais , Catepsina D/metabolismo , Bovinos , Glucagon/metabolismo , Hemoglobinas/metabolismo , Humanos , Insulina/metabolismo , Cinética , Meliteno/metabolismo , Dados de Sequência Molecular , Peptídeos/metabolismo , Ratos
2.
Planta ; 186(3): 317-23, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24186727

RESUMO

Resting barley (Hordeum vulgare L.) grains contain acid-proteinase activity. The corresponding enzyme was purified from grain extracts by affinity chromatography on a pepstatin-Sepharose column. The pH optimum of the affinity-purified enzyme was between 3.5 and 3.9 as measured by hemoglobin hydrolysis and the enzymatic activity was completely inhibited by pepstatin a specific inhibitor of aspartic proteinases (EC 3.4.23). Further purification on a Mono S column followed by activity measurements and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the affinity-purified enzyme preparation contained two active heterodimeric aspartic proteinases: a larger 48k Da enzyme, consisting of 32-kDa and 16-kDa subunits and a smaller one of 40 kDa, consisting of 29-kDa and 11-kDa subunits. Separation and partial amino acid sequence analysis of each subunit indicate that the 40-kDa enzyme is formed by proteolytic processing of the 48k Da form. Amino-acid sequence alignment and inhibition studies showed that the barley aspartic proteinase resembles mammalian lysosomal cathepsin D (EC 3.4.23.5).

4.
Plant Physiol ; 81(3): 823-9, 1986 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16664910

RESUMO

Extracts of resting and germinating (3 days at 20 degrees C) wheat (Triticum aestivum L. cv Ruso) grains rapidly hydrolyzed various benzyloxycarbonyldipeptides (Z-dipeptides) at pH 4 to 6. Similar activities were present in extracts of mature flag leaves. Fractionation by chromatography on CM-cellulose and on Sephadex G-200 showed that the activities in germinating grains were due to five acid carboxypeptidases with different and complementary substrate specificities. The wheat enzymes appeared to correspond to the five acid carboxypeptidases present in germinating barley (L Mikola 1983 Biochim Biophys Acta 747: 241-252). The enzymes were designated wheat carboxypeptidases I to V and their best or most characteristic substrates and approximate molecular weights were: I, Z-Phe-Ala, 120,000; II, Z-Ala-Arg, 120,000; III, Z-Ala-Phe, 40,000; IV, Z-Pro-Ala, 165,000; and V, Z-Pro-Ala, 150,000. Resting grains contained carboxypeptidase II as a series of three isoenzymes and low activities of carboxypeptidases IV and V. During germination the activity of carboxypeptidase II decreased, those of carboxypeptidases IV and V increased, and high activities of carboxypeptidases I and III appeared. The flag leaves contained high activity of carboxypeptidase I and lower activities of carboxypeptidases II, IV, and V, whereas carboxypeptidase III was absent.

5.
Planta ; 149(2): 149-54, 1980 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24306246

RESUMO

In germinating grains of barley, Hordeum vulgare L. cv. Himalaya, free proline accumulated in the starchy endosperm during the period of rapid mobilization of reserve proteins. When starchy endosperms were separated from germinating grains and homogenized in a dilute buffer of pH 5 (the pH of the starchy endosperm), the liberation of proline continued in these suspensions. The process was completely inhibited by diisopropylfluorophosphate, indicating that it was totally dependent on serine carboxy-peptidases. The carboxypeptidases present in the starchy endosperms of germinating grains were fractionated by chromatography on DEAE-cellulose. Four peaks were obtained, all with different activity spectra on the seven carbobenzoxydipeptides (Z-dipeptides) tested. Two of the peaks corresponded to previously known barley carboxypeptidases; these as well as a third peak hydrolyzed substrates of the types Z-X-Y and Z-X-Pro (X and Y denote any amino acid residue except proline). The fourth peak corresponded to a proline carboxypeptidase specific for substrates of the Z-Pro-X type. Apparently, in the hydrolysis of longer proline-containing peptides there must be sequential cooperation between the two carboxypeptidase types. The carboxypeptidases in extracts of starchy endosperms also liberated proline from the peptides Ala-Ala-Ala-Pro and Ala-Ala-Pro while Ala-Pro and Pro-Ala were not attacked. The dipeptides, however, were rapidly hydrolyzed around pH 7 by extracts prepared from the scutella of germinating grains. It is concluded that one part of the proline residues of the reserve proteins is liberated in situ in the starchy endosperm through the combined action of acid proteinases and carboxypeptidases, while another part is taken up in the form of small peptides by the scutellum, where proline is liberated by amino- and/or dipeptidases in some "neutral compartment".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...