Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(48): 53451-53461, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36399764

RESUMO

Myocardial infarction (MI) leads to the formation of an akinetic scar on the heart muscle causing impairment in cardiac contractility and conductance, leading to cardiac remodeling and heart failure (HF). The current pharmacological approaches for attenuating MI are limited and often come with long-term adverse effects. Therefore, there is an urgent need to develop novel multimodal therapeutics capable of modulating cardiac activity without causing any major adverse effects. In the current study, we have demonstrated the applicability of polydopamine nanoparticles (PDA-NPs) as a bioactive agent that can enhance the contractility and beat propagation of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Treatment of hiPSC-CMs with PDA-NPs demonstrated accumulation of the latter into mitochondria and significantly enhanced time-dependent adenosine triphosphate (ATP) production in these cells, indicating improved mitochondrial bioenergetics. Furthermore, the effect of PDA-NPs on hiPSC-CM activity was evaluated by measuring calcium transients. Treatment with PDA-NPs increased the calcium cycling in hiPSC-CMs in a temporal manner. Our results demonstrated a significant reduction in peak amplitude, transient duration, time to peak, and transient decay time in the PDA-NPs-treated hiPSC-CMs as compared to untreated hiPSC-CMs. Additionally, treatment of isolated perfused rat heart ex vivo with PDA-NPs demonstrated cardiotonic effects on the heart and significantly improved the hemodynamic function, suggesting its potential for enhancing whole heart contractility. Lastly, the gene expression analysis data revealed that PDA-NPs significantly upregulated cardiac-specific genes (ACADM, MYL2, MYC, HCN1, MYL7, GJA5, and PDHA1) demonstrating the ability to modulate genetic expression of cardiomyocytes. Taken together, these findings suggest PDA-NPs capability as a versatile nanomaterial with potential uses in next-generation cardiovascular applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Cálcio
2.
J Neurosci ; 31(34): 12129-38, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21865455

RESUMO

Changes in neuronal structure are thought to underlie long-term behavioral modifications associated with learning and memory. In particular, considerable evidence implicates the destabilization and retraction of dendritic spines along with the loss of spine synapses as an important cellular mechanism for refining brain circuits, yet the molecular mechanisms regulating spine elimination remain ill-defined. The postsynaptic density protein, PSD-95, is highly enriched in dendritic spines and has been associated with spine stability. Because spines with low levels of PSD-95 are more dynamic, and the recruitment of PSD-95 to nascent spines has been associated with spine stabilization, we hypothesized that loss of PSD-95 enrichment would be a prerequisite for spine retraction. To test this hypothesis, we used dual-color time-lapse two-photon microscopy to monitor rat hippocampal pyramidal neurons cotransfected with PSD-95-GFP and DsRed-Express, and we analyzed the relationship between PSD-95-GFP enrichment and spine morphological changes. Consistent with our hypothesis, we found that the majority of spines that retracted were relatively unenriched for PSD-95-GFP. However, in the subset of PSD-95-GFP-enriched spines that retracted, spine shrinkage and loss of PSD-95-GFP were tightly coupled, suggesting that loss of PSD-95-GFP enrichment did not precede spine retraction. Moreover, we found that, in some instances, spine retraction resulted in a significant enrichment of PSD-95-GFP on the dendritic shaft. Our data support a model of spine retraction in which loss of PSD-95 enrichment is not required prior to the destabilization of spines.


Assuntos
Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Plasticidade Neuronal/genética , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Animais , Espinhas Dendríticas/genética , Proteína 4 Homóloga a Disks-Large , Feminino , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Técnicas de Cultura de Órgãos , Estabilidade de RNA/fisiologia , Ratos , Sinapses/genética , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...