Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7995): 508-515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967579

RESUMO

Recent years have seen revived interest in computer-assisted organic synthesis1,2. The use of reaction- and neural-network algorithms that can plan multistep synthetic pathways have revolutionized this field1,3-7, including examples leading to advanced natural products6,7. Such methods typically operate on full, literature-derived 'substrate(s)-to-product' reaction rules and cannot be easily extended to the analysis of reaction mechanisms. Here we show that computers equipped with a comprehensive knowledge-base of mechanistic steps augmented by physical-organic chemistry rules, as well as quantum mechanical and kinetic calculations, can use a reaction-network approach to analyse the mechanisms of some of the most complex organic transformations: namely, cationic rearrangements. Such rearrangements are a cornerstone of organic chemistry textbooks and entail notable changes in the molecule's carbon skeleton8-12. The algorithm we describe and deploy at https://HopCat.allchemy.net/ generates, within minutes, networks of possible mechanistic steps, traces plausible step sequences and calculates expected product distributions. We validate this algorithm by three sets of experiments whose analysis would probably prove challenging even to highly trained chemists: (1) predicting the outcomes of tail-to-head terpene (THT) cyclizations in which substantially different outcomes are encoded in modular precursors differing in minute structural details; (2) comparing the outcome of THT cyclizations in solution or in a supramolecular capsule; and (3) analysing complex reaction mixtures. Our results support a vision in which computers no longer just manipulate known reaction types1-7 but will help rationalize and discover new, mechanistically complex transformations.


Assuntos
Algoritmos , Técnicas de Química Sintética , Ciclização , Redes Neurais de Computação , Terpenos , Cátions/química , Bases de Conhecimento , Terpenos/química , Técnicas de Química Sintética/métodos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Reprodutibilidade dos Testes , Soluções
2.
Adv Mater ; 35(29): e2211946, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929040

RESUMO

Efficient recycling of spent lithium-ion batteries (LIBs) is essential for making their numerous applications sustainable. Hydrometallurgy-based separation methods are an indispensable part of the recycling process but remain limited by the extraction efficiency and selectivity, and typically require numerous binary liquid-liquid extraction steps in which the capacity of the extracting organic phase or partition coefficient of extracted metals become an overall bottleneck. Herein, rotating reactors are described, in which the aqueous feed, organic extractant, and aqueous acceptor phases are all present in the same rotating vessel and can be vigorously stirred and emulsified without the coalescence of aqueous layers. In this arrangement, the extractant molecules are not equilibrated with the feed and, instead, "shuttle" between the feed/extractant and the extractant/acceptor interfaces multiple times, with each such molecule ultimately transferring approximately ten metal ions. This shuttling allows for using extractant concentrations much lower than in previous designs even for extremely concentrated feeds and, simultaneously, ensures unprecedented speed and selectivity of the one-pot processes. These experimental results are accompanied by theoretical considerations of the selectivity versus speed trends as well as discussion of parameters essential for system upscaling.

3.
Nature ; 586(7827): 57-63, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999483

RESUMO

Recent years have witnessed increased interest in systems that are capable of supporting multistep chemical processes without the need for manual handling of intermediates. These systems have been based either on collections of batch reactors1 or on flow-chemistry designs2-4, both of which require considerable engineering effort to set up and control. Here we develop an out-of-equilibrium system in which different reaction zones self-organize into a geometry that can dictate the progress of an entire process sequence. Multiple (routinely around 10, and in some cases more than 20) immiscible or pairwise-immiscible liquids of different densities are placed into a rotating container, in which they experience a centrifugal force that dominates over surface tension. As a result, the liquids organize into concentric layers, with thicknesses as low as 150 micrometres and theoretically reaching tens of micrometres. The layers are robust, yet can be internally mixed by accelerating or decelerating the rotation, and each layer can be individually addressed, enabling the addition, sampling or even withdrawal of entire layers during rotation. These features are combined in proof-of-concept experiments that demonstrate, for example, multistep syntheses of small molecules of medicinal interest, simultaneous acid-base extractions, and selective separations from complex mixtures mediated by chemical shuttles. We propose that 'wall-less' concentric liquid reactors could become a useful addition to the toolbox of process chemistry at small to medium scales and, in a broader context, illustrate the advantages of transplanting material and/or chemical systems from traditional, static settings into a rotating frame of reference.

4.
Nature ; 588(7836): 83-88, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049755

RESUMO

Training algorithms to computationally plan multistep organic syntheses has been a challenge for more than 50 years1-7. However, the field has progressed greatly since the development of early programs such as LHASA1,7, for which reaction choices at each step were made by human operators. Multiple software platforms6,8-14 are now capable of completely autonomous planning. But these programs 'think' only one step at a time and have so far been limited to relatively simple targets, the syntheses of which could arguably be designed by human chemists within minutes, without the help of a computer. Furthermore, no algorithm has yet been able to design plausible routes to complex natural products, for which much more far-sighted, multistep planning is necessary15,16 and closely related literature precedents cannot be relied on. Here we demonstrate that such computational synthesis planning is possible, provided that the program's knowledge of organic chemistry and data-based artificial intelligence routines are augmented with causal relationships17,18, allowing it to 'strategize' over multiple synthetic steps. Using a Turing-like test administered to synthesis experts, we show that the routes designed by such a program are largely indistinguishable from those designed by humans. We also successfully validated three computer-designed syntheses of natural products in the laboratory. Taken together, these results indicate that expert-level automated synthetic planning is feasible, pending continued improvements to the reaction knowledge base and further code optimization.


Assuntos
Inteligência Artificial , Produtos Biológicos/síntese química , Técnicas de Química Sintética/métodos , Química Orgânica/métodos , Software , Inteligência Artificial/normas , Automação/métodos , Automação/normas , Benzilisoquinolinas/síntese química , Benzilisoquinolinas/química , Técnicas de Química Sintética/normas , Química Orgânica/normas , Indanos/síntese química , Indanos/química , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/química , Bases de Conhecimento , Lactonas/síntese química , Lactonas/química , Macrolídeos/síntese química , Macrolídeos/química , Reprodutibilidade dos Testes , Sesquiterpenos/síntese química , Sesquiterpenos/química , Software/normas , Tetra-Hidroisoquinolinas/síntese química , Tetra-Hidroisoquinolinas/química
5.
Science ; 369(6511)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973002

RESUMO

The challenge of prebiotic chemistry is to trace the syntheses of life's key building blocks from a handful of primordial substrates. Here we report a forward-synthesis algorithm that generates a full network of prebiotic chemical reactions accessible from these substrates under generally accepted conditions. This network contains both reported and previously unidentified routes to biotic targets, as well as plausible syntheses of abiotic molecules. It also exhibits three forms of nontrivial chemical emergence, as the molecules within the network can act as catalysts of downstream reaction types; form functional chemical systems, including self-regenerating cycles; and produce surfactants relevant to primitive forms of biological compartmentalization. To support these claims, computer-predicted, prebiotic syntheses of several biotic molecules as well as a multistep, self-regenerative cycle of iminodiacetic acid were validated by experiment.


Assuntos
Compostos Orgânicos/síntese química , Origem da Vida , Simulação por Computador
6.
Nat Commun ; 10(1): 1434, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926819

RESUMO

Mapping atoms across chemical reactions is important for substructure searches, automatic extraction of reaction rules, identification of metabolic pathways, and more. Unfortunately, the existing mapping algorithms can deal adequately only with relatively simple reactions but not those in which expert chemists would benefit from computer's help. Here we report how a combination of algorithmics and expert chemical knowledge significantly improves the performance of atom mapping, allowing the machine to deal with even the most mechanistically complex chemical and biochemical transformations. The key feature of our approach is the use of few but judiciously chosen reaction templates that are used to generate plausible "intermediate" atom assignments which then guide a graph-theoretical algorithm towards the chemically correct isomorphic mappings. The algorithm performs significantly better than the available state-of-the-art reaction mappers, suggesting its uses in database curation, mechanism assignments, and - above all - machine extraction of reaction rules underlying modern synthesis-planning programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...