Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34250382

RESUMO

Plasma cell-free DNA (cfDNA) sequencing is a compelling diagnostic tool in solid tumors and has been shown to have high positive predictive value. However, limited assay sensitivity means that negative plasma genotyping, or the absence of detection of mutation of interest, still requires reflex tumor biopsy. METHODS: We analyzed two independent cohorts of patients with advanced non-small-cell lung cancer (NSCLC) with known canonical driver and resistance mutations who underwent plasma cfDNA genotyping. We measured quantitative features, such as maximum allelic frequency (mAF), as clinically available measures of cfDNA tumor content, and studied their relationship with assay sensitivity. RESULTS: In patients with EGFR-mutant NSCLC harboring EGFR T790M, detection of driver mutation at > 1% AF conferred a sensitivity of 97% (368/380) for detection of T790M across three cfDNA genotyping platforms. Similarly, in a second cohort of patients with EGFR or KRAS driver mutations, when the mAF of nontarget mutations was > 1%, sensitivity for driver mutation detection was 100% (43/43). Combining the two NSCLC patient cohorts, the presence of nontarget mutations at mAF > 1% predicts for high sensitivity (> 95%) for identifying the presence of the known driver mutation, whereas mAF of ≤ 1% confers sensitivity of only 26%-54% across platforms. Focusing on 21 false-negative cases where the driver mutation was not detected on plasma next-generation sequencing, other mutations (presumably clonal hematopoiesis) were detected at ≤ 1% AF in 14 (67%). CONCLUSION: Plasma cfDNA genotyping is highly sensitive when adequate tumor DNA content is present. The likelihood of a false-negative cfDNA genotyping result is low in a sample with evidence of > 1% tumor content. Bioinformatic approaches are needed to further optimize the assessment of cfDNA tumor content in plasma genotyping assays.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Genótipo , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Humanos , Sensibilidade e Especificidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-34250387

RESUMO

Plasma circulating tumor DNA (ctDNA) analysis is routine for genotyping of advanced non-small-cell lung cancer (NSCLC); however, early response assessment using plasma ctDNA has yet to be well characterized. MATERIALS AND METHODS: Patients with advanced EGFR-mutant NSCLC across three phase I NCI osimertinib combination trials were analyzed in this study, and an institutional cohort of patients with KRAS-, EGFR-, and BRAF-mutant advanced NSCLC receiving systemic treatment was used for validation. Plasma was collected before treatment initiation and serially before each cycle of therapy, and key driver mutations in ctDNA were characterized by droplet digital polymerase chain reaction. Timing of plasma versus imaging response was compared in a separate cohort of patients with EGFR-mutant NSCLC treated with osimertinib. Across cohorts, we also studied ctDNA variability before treatment start. RESULTS: In the NCI cohort, 14/16 (87.5%) patients exhibited ≥ 90% decrease in mutation abundance by the first on-treatment timepoint (20-28 days from treatment start) with minimal subsequent change. Similarly, 47/56 (83.9%) patients with any decrease in the institutional cohort demonstrated ≥ 90% decrease in mutation abundance by the first follow-up draw (7-30 days from treatment start). All 16 patients in the imaging cohort with radiographic partial response showed best plasma response within one cycle, preceding best radiographic response by a median of 24 weeks (range: 3-147 weeks). Variability in ctDNA levels before treatment start was observed. CONCLUSION: Plasma ctDNA response is an early phenomenon, with the majority of change detectable within the first cycle of therapy. These kinetics may offer an opportunity for early insight into treatment effect before standard imaging timepoints.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , DNA Tumoral Circulante/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias , Resultado do Tratamento
3.
JCO Precis Oncol ; 5: 726-732, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34994618

RESUMO

PURPOSE: Next-generation sequencing (NGS) is an important component of first-line treatment selection for metastatic non-small-cell lung cancer (NSCLC) and is typically ordered by medical oncologists in the outpatient setting after the pathologic diagnosis has been established. Time to treatment initiation is an important clinical challenge, especially for patients with rapidly progressive disease. METHODS: Plasma cell-free DNA (cfDNA) NGS was performed on 20 patients with suspected metastatic NSCLC hospitalized at an academic cancer center, before pathologic diagnosis. Clinicopathologic and treatment data were analyzed. Time from pathologic diagnosis to genotyping result was compared with standard care groups who underwent plasma or tumor NGS in routine clinical care. RESULTS: The median time from pathologic diagnosis to the plasma cfDNA NGS result was 3 days in the study cohort, versus 18 days and 35.5 days in the standard care plasma and tumor NGS groups, respectively. 68.4% of evaluable patients had metastatic NSCLC, and 21.1% had another advanced solid tumor. Forty-five percent of plasma cfDNA results demonstrated actionable or informative genomic variants, and 20% of patients received standard or investigational first-line targeted therapy as a direct result of the plasma cfDNA NGS. CONCLUSION: Plasma cfDNA NGS before pathologic diagnosis in hospitalized patients with suspected metastatic NSCLC results in substantially shorter time to genotyping result compared with standard outpatient workflows. This provides important initial evidence for the use of plasma-based genotyping earlier in the diagnostic journey, especially for patients with clinically aggressive disease. Additional studies and innovative approaches toward regulatory and reimbursement considerations are needed.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Ácidos Nucleicos Livres/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/secundário , Feminino , Genótipo , Hospitalização , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
4.
Clin Cancer Res ; 27(1): 34-42, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082208

RESUMO

PURPOSE: The RET proto-oncogene encodes a receptor tyrosine kinase that is activated by gene fusion in 1%-2% of non-small cell lung cancers (NSCLC) and rarely in other cancer types. Selpercatinib is a highly selective RET kinase inhibitor that has recently been approved by the FDA in lung and thyroid cancers with activating RET gene fusions and mutations. Molecular mechanisms of acquired resistance to selpercatinib are poorly understood. PATIENTS AND METHODS: We studied patients treated on the first-in-human clinical trial of selpercatinib (NCT03157129) who were found to have MET amplification associated with resistance to selpercatinib. We validated MET activation as a targetable mediator of resistance to RET-directed therapy, and combined selpercatinib with the MET/ALK/ROS1 inhibitor crizotinib in a series of single patient protocols (SPP). RESULTS: MET amplification was identified in posttreatment biopsies in 4 patients with RET fusion-positive NSCLC treated with selpercatinib. In at least one case, MET amplification was clearly evident prior to therapy with selpercatinib. We demonstrate that increased MET expression in RET fusion-positive tumor cells causes resistance to selpercatinib, and this can be overcome by combining selpercatinib with crizotinib. Using SPPs, selpercatinib with crizotinib were given together generating anecdotal evidence of clinical activity and tolerability, with one response lasting 10 months. CONCLUSIONS: Through the use of SPPs, we were able to offer combination therapy targeting MET-amplified resistance identified on the first-in-human study of selpercatinib. These data suggest that MET dependence is a recurring and potentially targetable mechanism of resistance to selective RET inhibition in advanced NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas , Ensaios Clínicos Fase I como Assunto , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Amplificação de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Projetos Piloto , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-ret/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Resultado do Tratamento
5.
Artigo em Inglês | MEDLINE | ID: mdl-33015530

RESUMO

PURPOSE: Genomic analysis of plasma cell-free DNA has become a widespread tool for advanced non-small-cell lung cancer care. Whereas accuracy has been reported on widely, its usefulness is also tied tightly to its turnaround time (TAT), which is not well studied. METHODS: We studied the TAT of commercial plasma next-generation sequencing (NGS; Guardant360) for 533 results from 461 patients at our center between August 2016 and October 2019. The study received institutional review board approval as a quality improvement study; therefore, the results of the test and clinical setting were not analyzed. RESULTS: TAT from blood draw to result (median of 9 days) was slightly longer than the TAT from laboratory receipt to result, a median of 7 days. Testing volume at our center increased three-fold over the time of the study. During this period, clinical TAT decreased from an initial median of 12 days to a median of 8 days in 2018, but more recently the median increased slightly to 9 days. During the most recent 12 months, 231 (95%) of 247 cases resulted within 14 days from blood draw, with delayed results usually because of billing, whereas 44 cases (18%) resulted within 7 days of blood draw. Studying 92 cases drawn in the most recent 3-month period, the median time of result receipt was 4:01 pm Eastern Time/1:01 pm Pacific Time; 39 results (43%) were returned after 5:00 pm Eastern Time. CONCLUSION: In a large single-institution experience, we find that plasma NGS results can routinely be expected within 2 weeks, but uncommonly result within 1 week, supporting the need for new strategies to incorporate plasma NGS into the initial genotyping of advanced non-small-cell lung cancer.

7.
Clin Cancer Res ; 26(11): 2615-2625, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32034073

RESUMO

PURPOSE: Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors (TKI) are poorly understood. We aimed to characterize the genomic mechanisms of resistance to type I and type II MET TKIs and their impact on sequential MET TKI therapy outcomes in patients with metastatic MET exon 14-mutant NSCLC. EXPERIMENTAL DESIGN: Genomic alterations occurring at the time of progression on MET TKIs were studied using plasma and tissue next-generation sequencing (NGS). RESULTS: A total of 20 patients had tissue or plasma available for analysis at the time of acquired resistance to a MET TKI. Genomic alterations known or suspected to be mechanisms of resistance were detected in 15 patients (75%). On-target acquired mechanisms of resistance, including single and polyclonal MET kinase domain mutations in codons H1094, G1163, L1195, D1228, Y1230, and high levels of amplification of the MET exon 14-mutant allele, were observed in 7 patients (35%). A number of off-target mechanisms of resistance were detected in 9 patients (45%), including KRAS mutations and amplifications in KRAS, EGFR, HER3, and BRAF; one case displayed both on- and off-target mechanisms of resistance. In 2 patients with on-target resistant mutations, switching between type I and type II MET TKIs resulted in second partial responses. CONCLUSIONS: On-target secondary mutations and activation of bypass signaling drive resistance to MET TKIs. A deeper understanding of these molecular mechanisms can support the development of sequential or combinatorial therapeutic strategies to overcome resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Éxons , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular , Prognóstico
8.
Lung Cancer ; 134: 96-99, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31320002

RESUMO

OBJECTIVES: Plasma genotyping represents an opportunity for convenient detection of clinically actionable mutations in advanced cancer patients, such has been well-documented in non-small cell lung cancer (NSCLC). Oncogenic gene fusions are complex variants that may be more challenging to detect by next-generation sequencing (NGS) of plasma cell-free DNA (cfDNA). Rigorous evaluation of plasma NGS assays in the detection of fusions is needed to maximize clinical utility. MATERIALS AND METHODS: Additional plasma was collected from patients with advanced NSCLC and ALK, ROS1, or RET gene fusions in tissue who had undergone clinical plasma NGS using Guardant360™(G360, Guardant Health). We then sequenced extracted cfDNA with a plasma NGS kit focused on known driver mutations in NSCLC (ctDx-Lung, Resolution Bioscience) with cloud-based bioinformatic analysis and blinded variant calling. RESULTS: Of 16 patients assayed known to harbor anALK, ROS1, or RET in tumor, G360 detected fusions in 7 cases, ctDx-Lung detected fusions in 13 cases, and 3 cases were detected by neither. Of the 7 fusions detected by both assays, G360 reported lower mutant allelic fractions (AF). In cases missed by G360, tumor derived TP53 mutations were often detected confirming presence of tumor DNA. Raw sequencing data showed that inverted or out-of-frame variants were overrepresented in cases detected using ctDx-Lung but not by G360. CONCLUSION: Focusing on complex, clinically actionable mutations using tumor as a reference standard allows for evaluation of technical differences in plasma NGS assays that may impact clinical performance. Noting the heterogeneity of fusion sequences observed in NSCLC, we hypothesize that differences in hybrid capture techniques and bioinformatic calling may be sources of variations in sensitivity among these assays.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , DNA de Neoplasias , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/diagnóstico , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Rearranjo Gênico , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Mutação , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...