Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hemasphere ; 7(5): e885, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153874

RESUMO

Myeloproliferative neoplasms (MPNs) are caused by a somatic gain-of-function mutation in 1 of the 3 disease driver genes JAK2, MPL, or CALR. About half of the MPNs patients also carry additional somatic mutations that modify the clinical course. The order of acquisition of these gene mutations has been proposed to influence the phenotype and evolution of the disease. We studied 50 JAK2-V617F-positive MPN patients who carried at least 1 additional somatic mutation and determined the clonal architecture of their hematopoiesis by sequencing DNA from single-cell-derived colonies. In 22 of these patients, the same blood samples were also studied for comparison by Tapestri single-cell DNA sequencing (scDNAseq). The clonal architectures derived by the 2 methods showed good overall concordance. scDNAseq showed higher sensitivity for mutations with low variant allele fraction, but had more difficulties distinguishing between heterozygous and homozygous mutations. By unsupervised analysis of clonal architecture data from all 50 MPN patients, we defined 4 distinct clusters. Cluster 4, characterized by more complex subclonal structure correlated with reduced overall survival, independent of the MPN subtype, presence of high molecular risk mutations, or the age at diagnosis. Cluster 1 was characterized by additional mutations residing in clones separated from the JAK2-V617F clone. The correlation with overall survival improved when mutation in such separated clones were not counted. Our results show that scDNAseq can reliably decipher the clonal architecture and can be used to refine the molecular prognostic stratification that until now was primarily based on the clinical and laboratory parameters.

2.
Nat Commun ; 13(1): 5346, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100613

RESUMO

Interleukin-1ß (IL-1ß) is a master regulator of inflammation. Increased activity of IL-1ß has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1ß serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1ß overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1ß in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1ß in JAK2-V617F mutant mice by anti-IL-1ß antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1ß with anti-IL-1ß antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.


Assuntos
Interleucina-1beta/metabolismo , Janus Quinase 2/genética , Transtornos Mieloproliferativos , Neoplasias , Osteosclerose , Mielofibrose Primária , Animais , Janus Quinase 2/metabolismo , Camundongos , Camundongos Knockout , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Nitrilas , Osteosclerose/genética , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Pirazóis , Pirimidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...