Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(42): 20006-20014, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31603165

RESUMO

Thin films of an iron(ii) complex with a photochromic diarylethene-based ligand and featuring a spin-crossover behaviour have been grown by sublimation in ultra-high vacuum on highly oriented pyrolytic graphite and spectroscopically characterized through high-resolution X-ray and ultraviolet photoemission, as well as via X-ray absorption. Temperature-dependent studies demonstrated that the thermally induced spin-crossover is preserved at a sub-monolayer (0.7 ML) coverage. Although the photochromic ligand ad hoc integrated into the complex allows the photo-switching of the spin state of the complex at room temperature both in bulk and for a thick film on highly oriented pyrolytic graphite, this photomagnetic effect is not observed in sub-monolayer deposits. Ab initio calculations justify this behaviour as the result of specific adsorbate-substrate interactions leading to the stabilization of the photoinactive form of the diarylethene ligand over photoactive one on the surface.

2.
Angew Chem Int Ed Engl ; 54(44): 12976-80, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26480333

RESUMO

Spin-crossover metal complexes are highly promising magnetic molecular switches for prospective molecule-based devices. The spin-crossover molecular photoswitches developed so far operate either at very low temperatures or in the liquid phase, which hinders practical applications. Herein, we present a molecular spin-crossover iron(II) complex that can be switched between paramagnetic high-spin and diamagnetic low-spin states with light at room temperature in the solid state. The reversible photoswitching is induced by alternating irradiation with ultraviolet and visible light and proceeds at the molecular level.

3.
Angew Chem Int Ed Engl ; 53(7): 1790-4, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24482198

RESUMO

During the past 10 years iron-catalyzed reactions have become established in the field of organic synthesis. For example, the complex anion [Fe(CO)3 (NO)](-) , which was originally described by Hogsed and Hieber, shows catalytic activity in various organic reactions. This anion is commonly regarded as being isoelectronic with [Fe(CO)4 ](2-) , which, however, shows poor catalytic activity. The spectroscopic and quantum chemical investigations presented herein reveal that the complex ferrate [Fe(CO)3 (NO)](-) cannot be regarded as a Fe(-II) species, but rather is predominantly a Fe(0) species, in which the metal is covalently bonded to NO(-) by two π-bonds. A metal-N σ-bond is not observed.

4.
Inorg Chem ; 52(19): 11585-92, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24063424

RESUMO

A photoisomerizable diarylethene-derived ligand, phen*, has been successfully introduced into a spin-crossover iron(II) complex, [Fe(H2B(pz)2)2phen*] (1; pz =1-pyrazolyl). A ligand-based photocyclization (photocycloreversion) in 1 modifies the ligand field, which, in turn, results in a highly efficient paramagnetic high-spin → diamagnetic low-spin (low-spin → high-spin) transition at the coordinated Fe(II) ion. The reversible photoswitching of the spin states, and thus the associated magnetic properties, has been performed in solution at room temperature and has been directly monitored by measuring the magnetic susceptibility via the Evans method. The observed spin-state photoconversion in 1 exceeds 40%, which is the highest value for spin-crossover molecular switches in solution at room temperature reported to date. The photoexcited state is extraordinarily thermally stable, showing a half-time of about 18 days in solution at room temperature. Because of the outstanding photophysical properties of diarylethenes, including single-crystalline photochromism, molecular switch 1 may offer a promising platform for controlling the magnetic properties in the solid state and ultimately at the single-molecule level with light at room temperature.

5.
Dalton Trans ; 42(15): 5237-41, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23455570

RESUMO

A bisoxamate ligand containing three different types of coordination sites was designed and synthesized. The developed synthetic strategy was adopted to prepare a related 1,2-bis(2-hydroxybenzamido)benzene-derived ligand. Nickel(II) complexes of both the novel ligands were obtained and characterized by X-ray crystallography, NMR, electronic absorption spectroscopy, and theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...