Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38270563

RESUMO

CLPB is a mitochondrial intermembrane space AAA+ domain-containing disaggregase. CLPB mutations are associated with 3-methylglutaconic aciduria and neutropenia; however, the molecular mechanism underscoring disease and the contribution of CLPB substrates to disease pathology remains unknown. Interactions between CLPB and mitochondrial quality control (QC) factors, including PARL and OPA1, have been reported, hinting at dysregulation of organelle QC in disease. Utilizing proteomic and biochemical approaches, we show a stress-specific aggregation phenotype in a CLPB-null environment and define the CLPB substrate profile. We illustrate an interplay between intermembrane space proteins including CLPB, HAX1, HTRA2, and the inner membrane quality control proteins (STOML2, PARL, YME1L1; SPY complex), with CLPB deficiency impeding SPY complex function by virtue of protein aggregation in the intermembrane space. We conclude that there is an interdependency of mitochondrial QC components at the intermembrane space/inner membrane interface, and perturbations to this network may underscore CLPB disease pathology.


Assuntos
Endopeptidase Clp , Membranas Intracelulares , Proteínas de Membrana , Proteínas de Membrana/genética , Mitocôndrias/genética , Proteólise , Proteômica , Humanos , Endopeptidase Clp/genética
2.
Cell Metab ; 35(10): 1799-1813.e7, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37633273

RESUMO

The mammalian respiratory chain complexes I, III2, and IV (CI, CIII2, and CIV) are critical for cellular bioenergetics and form a stable assembly, the respirasome (CI-CIII2-CIV), that is biochemically and structurally well documented. The role of the respirasome in bioenergetics and the regulation of metabolism is subject to intense debate and is difficult to study because the individual respiratory chain complexes coexist together with high levels of respirasomes. To critically investigate the in vivo role of the respirasome, we generated homozygous knockin mice that have normal levels of respiratory chain complexes but profoundly decreased levels of respirasomes. Surprisingly, the mutant mice are healthy, with preserved respiratory chain capacity and normal exercise performance. Our findings show that high levels of respirasomes are dispensable for maintaining bioenergetics and physiology in mice but raise questions about their alternate functions, such as those relating to the regulation of protein stability and prevention of age-associated protein aggregation.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Animais , Camundongos , Transporte de Elétrons , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Mamíferos/metabolismo
3.
Methods Mol Biol ; 2615: 219-228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807795

RESUMO

Mitochondria are eukaryotic organelles of endosymbiotic origin that contain their own genetic material, mitochondrial DNA (mtDNA), and dedicated systems for mtDNA maintenance and expression. MtDNA molecules encode a limited number of proteins that are nevertheless all essential subunits of the mitochondrial oxidative phosphorylation system. Here, we describe protocols to monitor DNA and RNA synthesis in intact, isolated mitochondria. These in organello synthesis protocols are valuable techniques for studying the mechanisms and regulation of mtDNA maintenance and expression.


Assuntos
Replicação do DNA , Mitocôndrias , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Proteínas Mitocondriais/metabolismo
4.
Nucleic Acids Res ; 50(15): 8749-8766, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947649

RESUMO

The in vivo role for RNase H1 in mammalian mitochondria has been much debated. Loss of RNase H1 is embryonic lethal and to further study its role in mtDNA expression we characterized a conditional knockout of Rnaseh1 in mouse heart. We report that RNase H1 is essential for processing of RNA primers to allow site-specific initiation of mtDNA replication. Without RNase H1, the RNA:DNA hybrids at the replication origins are not processed and mtDNA replication is initiated at non-canonical sites and becomes impaired. Importantly, RNase H1 is also needed for replication completion and in its absence linear deleted mtDNA molecules extending between the two origins of mtDNA replication are formed accompanied by mtDNA depletion. The steady-state levels of mitochondrial transcripts follow the levels of mtDNA, and RNA processing is not altered in the absence of RNase H1. Finally, we report the first patient with a homozygous pathogenic mutation in the hybrid-binding domain of RNase H1 causing impaired mtDNA replication. In contrast to catalytically inactive variants of RNase H1, this mutant version has enhanced enzyme activity but shows impaired primer formation. This finding shows that the RNase H1 activity must be strictly controlled to allow proper regulation of mtDNA replication.


Assuntos
DNA Mitocondrial , Ribonuclease H , Camundongos , Animais , DNA Mitocondrial/química , Ribonuclease H/genética , Ribonuclease H/metabolismo , RNA/química , Replicação do DNA/genética , Mitocôndrias/genética , Mamíferos/genética
5.
PLoS Genet ; 18(5): e1010190, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533204

RESUMO

Mitochondrial DNA (mtDNA) maintenance disorders are caused by mutations in ubiquitously expressed nuclear genes and lead to syndromes with variable disease severity and tissue-specific phenotypes. Loss of function mutations in the gene encoding the mitochondrial genome and maintenance exonuclease 1 (MGME1) result in deletions and depletion of mtDNA leading to adult-onset multisystem mitochondrial disease in humans. To better understand the in vivo function of MGME1 and the associated disease pathophysiology, we characterized a Mgme1 mouse knockout model by extensive phenotyping of ageing knockout animals. We show that loss of MGME1 leads to de novo formation of linear deleted mtDNA fragments that are constantly made and degraded. These findings contradict previous proposal that MGME1 is essential for degradation of linear mtDNA fragments and instead support a model where MGME1 has a critical role in completion of mtDNA replication. We report that Mgme1 knockout mice develop a dramatic phenotype as they age and display progressive weight loss, cataract and retinopathy. Surprisingly, aged animals also develop kidney inflammation, glomerular changes and severe chronic progressive nephropathy, consistent with nephrotic syndrome. These findings link the faulty mtDNA synthesis to severe inflammatory disease and thus show that defective mtDNA replication can trigger an immune response that causes age-associated progressive pathology in the kidney.


Assuntos
Nefropatias , Doenças Mitocondriais , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Rim/metabolismo , Nefropatias/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Mutação
6.
Sci Adv ; 7(39): eabi7514, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559558

RESUMO

Mitochondrial energy metabolism plays an important role in the pathophysiology of insulin resistance. Recently, a missense N437S variant was identified in the MRPP3 gene, which encodes a mitochondrial RNA processing enzyme within the RNase P complex, with predicted impact on metabolism. We used CRISPR-Cas9 genome editing to introduce this variant into the mouse Mrpp3 gene and show that the variant causes insulin resistance on a high-fat diet. The variant did not influence mitochondrial gene expression markedly, but instead, it reduced mitochondrial calcium that lowered insulin release from the pancreatic islet ß cells of the Mrpp3 variant mice. Reduced insulin secretion resulted in lower insulin levels that contributed to imbalanced metabolism and liver steatosis in the Mrpp3 variant mice on a high-fat diet. Our findings reveal that the MRPP3 variant may be a predisposing factor to insulin resistance and metabolic disease in the human population.

7.
Sci Adv ; 7(27)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34215584

RESUMO

We report a role for the mitochondrial single-stranded DNA binding protein (mtSSB) in regulating mitochondrial DNA (mtDNA) replication initiation in mammalian mitochondria. Transcription from the light-strand promoter (LSP) is required both for gene expression and for generating the RNA primers needed for initiation of mtDNA synthesis. In the absence of mtSSB, transcription from LSP is strongly up-regulated, but no replication primers are formed. Using deep sequencing in a mouse knockout model and biochemical reconstitution experiments with pure proteins, we find that mtSSB is necessary to restrict transcription initiation to optimize RNA primer formation at both origins of mtDNA replication. Last, we show that human pathological versions of mtSSB causing severe mitochondrial disease cannot efficiently support primer formation and initiation of mtDNA replication.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Mamíferos/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo
8.
Nat Metab ; 3(5): 636-650, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33903774

RESUMO

Cytosolic mitochondrial DNA (mtDNA) elicits a type I interferon response, but signals triggering the release of mtDNA from mitochondria remain enigmatic. Here, we show that mtDNA-dependent immune signalling via the cyclic GMP-AMP synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS-STING-TBK1) pathway is under metabolic control and is induced by cellular pyrimidine deficiency. The mitochondrial protease YME1L preserves pyrimidine pools by supporting de novo nucleotide synthesis and by proteolysis of the pyrimidine nucleotide carrier SLC25A33. Deficiency of YME1L causes inflammation in mouse retinas and in cultured cells. It drives the release of mtDNA and a cGAS-STING-TBK1-dependent inflammatory response, which requires SLC25A33 and is suppressed upon replenishment of cellular pyrimidine pools. Overexpression of SLC25A33 is sufficient to induce immune signalling by mtDNA. Similarly, depletion of cytosolic nucleotides upon inhibition of de novo pyrimidine synthesis triggers mtDNA-dependent immune responses in wild-type cells. Our results thus identify mtDNA release and innate immune signalling as a metabolic response to cellular pyrimidine deficiencies.


Assuntos
DNA Mitocondrial/genética , Imunidade Inata , Mitocôndrias/genética , Mitocôndrias/metabolismo , Nucleotídeos de Pirimidina/metabolismo , Animais , Citosol/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Modelos Biológicos , Nucleotidiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
9.
PLoS Genet ; 16(12): e1009242, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315859

RESUMO

Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy. Application to mouse models of mtDNA maintenance disease demonstrated the ability to detect deletions and duplications even at low levels of heteroplasmy.


Assuntos
DNA Mitocondrial/genética , Deleção de Genes , Duplicação Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , DNA Mitocondrial/química , Sequenciamento de Nucleotídeos em Larga Escala/normas , Camundongos , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normas
10.
Cell Rep ; 29(6): 1728-1738.e9, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693908

RESUMO

Mitochondria harbor specialized ribosomes (mitoribosomes) necessary for the synthesis of key membrane proteins of the oxidative phosphorylation (OXPHOS) machinery located in the mitochondrial inner membrane. To date, no animal model exists to study mitoribosome composition and mitochondrial translation coordination in mammals in vivo. Here, we create MitoRibo-Tag mice as a tool enabling affinity purification and proteomics analyses of mitoribosomes and their interactome in different tissues. We also define the composition of an assembly intermediate formed in the absence of MTERF4, necessary for a late step in mitoribosomal biogenesis. We identify the orphan protein PUSL1, which interacts with a large subunit assembly intermediate, and demonstrate that it is an inner-membrane-associated mitochondrial matrix protein required for efficient mitochondrial translation. This work establishes MitoRibo-Tag mice as a powerful tool to study mitoribosomes in vivo, enabling future studies on the mitoribosome interactome under different physiological states, as well as in disease and aging.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Coração/fisiologia , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Miocárdio/metabolismo , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica , Proteínas Ribossômicas/genética , Fatores de Transcrição/genética
11.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036713

RESUMO

Regulation of replication and expression of mitochondrial DNA (mtDNA) is essential for cellular energy conversion via oxidative phosphorylation. The mitochondrial transcription elongation factor (TEFM) has been proposed to regulate the switch between transcription termination for replication primer formation and processive, near genome-length transcription for mtDNA gene expression. Here, we report that Tefm is essential for mouse embryogenesis and that levels of promoter-distal mitochondrial transcripts are drastically reduced in conditional Tefm-knockout hearts. In contrast, the promoter-proximal transcripts are much increased in Tefm knockout mice, but they mostly terminate before the region where the switch from transcription to replication occurs, and consequently, de novo mtDNA replication is profoundly reduced. Unexpectedly, deep sequencing of RNA from Tefm knockouts revealed accumulation of unprocessed transcripts in addition to defective transcription elongation. Furthermore, a proximity-labeling (BioID) assay showed that TEFM interacts with multiple RNA processing factors. Our data demonstrate that TEFM acts as a general transcription elongation factor, necessary for both gene transcription and replication primer formation, and loss of TEFM affects RNA processing in mammalian mitochondria.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Processamento Pós-Transcricional do RNA , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Animais , DNA Mitocondrial , Desenvolvimento Embrionário/genética , Deleção de Genes , Regulação da Expressão Gênica , Loci Gênicos , Heterozigoto , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Fenótipo , Regiões Promotoras Genéticas
12.
Cell Rep ; 23(1): 127-142, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29617655

RESUMO

The regulation of mitochondrial RNA life cycles and their roles in ribosome biogenesis and energy metabolism are not fully understood. We used CRISPR/Cas9 to generate heart- and skeletal-muscle-specific knockout mice of the pentatricopeptide repeat domain protein 1, PTCD1, and show that its loss leads to severe cardiomyopathy and premature death. Our detailed transcriptome-wide and functional analyses of these mice enabled us to identify the molecular role of PTCD1 as a 16S rRNA-binding protein essential for its stability, pseudouridylation, and correct biogenesis of the mitochondrial large ribosomal subunit. We show that impaired mitoribosome biogenesis can have retrograde signaling effects on nuclear gene expression through the transcriptional activation of the mTOR pathway and upregulation of cytoplasmic protein synthesis and pro-survival factors in the absence of mitochondrial translation. Taken together, our data show that impaired assembly of the mitoribosome exerts its consequences via differential regulation of mitochondrial and cytoplasmic protein synthesis.


Assuntos
Proteínas Mitocondriais/fisiologia , Ribossomos Mitocondriais/metabolismo , Biogênese de Organelas , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Serina-Treonina Quinases TOR/metabolismo
13.
Nat Commun ; 9(1): 1202, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572490

RESUMO

Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary dramatically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA.


Assuntos
DNA Mitocondrial/genética , Exodesoxirribonucleases/fisiologia , Deleção de Genes , Progéria/genética , Animais , Replicação do DNA , Exodesoxirribonucleases/genética , Feminino , Fibroblastos/metabolismo , Biblioteca Gênica , Células HeLa , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Fenótipo , Mutação Puntual , Motilidade dos Espermatozoides , Distribuição Tecidual , Transcrição Gênica
14.
Cell Metab ; 25(4): 765-776, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380371

RESUMO

Respiratory chain dysfunction plays an important role in human disease and aging. It is now well established that the individual respiratory complexes can be organized into supercomplexes, and structures for these macromolecular assemblies, determined by electron cryo-microscopy, have been described recently. Nevertheless, the reason why supercomplexes exist remains an enigma. The widely held view that they enhance catalysis by channeling substrates is challenged by both structural and biophysical information. Here, we evaluate and discuss data and hypotheses on the structures, roles, and assembly of respiratory-chain supercomplexes and propose a future research agenda to address unanswered questions.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Animais , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Humanos , Mamíferos/metabolismo , Modelos Biológicos , Modelos Moleculares , Estabilidade Proteica
15.
Cell Rep ; 16(7): 1874-90, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498866

RESUMO

The regulation of mitochondrial RNA processing and its importance for ribosome biogenesis and energy metabolism are not clear. We generated conditional knockout mice of the endoribonuclease component of the RNase P complex, MRPP3, and report that it is essential for life and that heart and skeletal-muscle-specific knockout leads to severe cardiomyopathy, indicating that its activity is non-redundant. Transcriptome-wide parallel analyses of RNA ends (PARE) and RNA-seq enabled us to identify that in vivo 5' tRNA cleavage precedes 3' tRNA processing, and this is required for the correct biogenesis of the mitochondrial ribosomal subunits. We identify that mitoribosomal biogenesis proceeds co-transcriptionally because large mitoribosomal proteins can form a subcomplex on an unprocessed RNA containing the 16S rRNA. Taken together, our data show that RNA processing links transcription to translation via assembly of the mitoribosome.


Assuntos
Cardiomiopatias/genética , Ribossomos Mitocondriais/metabolismo , Biogênese de Organelas , Processamento Pós-Transcricional do RNA , Ribonuclease P/genética , Proteínas Ribossômicas/genética , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Fracionamento Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético , Miocárdio/metabolismo , Miocárdio/patologia , Biossíntese de Proteínas , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribonuclease P/deficiência , Proteínas Ribossômicas/metabolismo , Transcrição Gênica , Transcriptoma
16.
Sci Adv ; 2(8): e1600963, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27532055

RESUMO

Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA(+) Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression.


Assuntos
DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Transcrição Gênica , Animais , Replicação do DNA/genética , Regulação da Expressão Gênica , Genoma Mitocondrial , Camundongos
17.
Cell Rep ; 16(9): 2387-98, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27545886

RESUMO

Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds primarily to free mitochondrial complex III and, to a minor extent, to complex IV to specifically promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. Furthermore, COX7A2L does not affect the biogenesis, stabilization, and function of the individual oxidative phosphorylation complexes. These data show that independent regulatory mechanisms for the biogenesis and turnover of different MRC supercomplex structures co-exist.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Animais , Transporte de Elétrons , Complexo I de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitocôndrias Cardíacas/química , Miocárdio/citologia , Miocárdio/metabolismo , Ligação Proteica , Estabilidade Proteica
18.
Nucleic Acids Res ; 44(12): 5861-71, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27220468

RESUMO

Recently, MGME1 was identified as a mitochondrial DNA nuclease with preference for single-stranded DNA (ssDNA) substrates. Loss-of-function mutations in patients lead to mitochondrial disease with DNA depletion, deletions, duplications and rearrangements. Here, we assess the biochemical role of MGME1 in the processing of flap intermediates during mitochondrial DNA replication using reconstituted systems. We show that MGME1 can cleave flaps to enable efficient ligation of newly replicated DNA strands in combination with POLγ. MGME1 generates a pool of imprecisely cut products (short flaps, nicks and gaps) that are converted to ligatable nicks by POLγ through extension or excision of the 3'-end strand. This is dependent on the 3'-5' exonuclease activity of POLγ which limits strand displacement activity and enables POLγ to back up to the nick by 3'-5' degradation. We also demonstrate that POLγ-driven strand displacement is sufficient to generate DNA- but not RNA-flap substrates suitable for MGME1 cleavage and ligation during replication. Our findings have implications for RNA primer removal models, the 5'-end processing of nascent DNA at OriH, and DNA repair.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/genética , Exodesoxirribonucleases/genética , Sistema Livre de Células/metabolismo , Clonagem Molecular , Clivagem do DNA , DNA Polimerase gama , DNA Mitocondrial/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleases/metabolismo , Expressão Gênica , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Cell Metab ; 21(5): 660-1, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25955201

RESUMO

The mitochondrial contact site and cristae organizing system (MICOS) complex is essential for normal mitochondria biogenesis and morphology. In this issue, Bohnert et al. (2015) and Barbot et al. (2015) demonstrate that a MICOS core subunit, Mic10, is crucial for mitochondrial cristae formation by forming oligomers at the cristae junctions.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
20.
Cell Metab ; 20(6): 1069-75, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25470551

RESUMO

The organization of individual respiratory chain complexes into supercomplexes or respirasomes has attracted great interest because of the implications for cellular energy conversion. Recently, it was reported that commonly used mouse strains harbor a short COX7a2l (SCAFI) gene isoform that supposedly precludes the formation of complex IV-containing supercomplexes. This claim potentially has serious implications for numerous mouse studies addressing important topics in metabolism, including adaptation to space flights. Using several complementary experimental approaches, we show that mice with the short COX7a2l isoform have normal biogenesis and steady-state levels of complex IV-containing supercomplexes and consequently have normal respiratory chain function. Furthermore, we use a mouse knockout of Lrpprc and show that loss of complex IV compromises respirasome formation. We conclude that the presence of the short COX7a2l isoform in the commonly used C57BL/6 mouse strains does not prevent their use in metabolism research.


Assuntos
Isoformas de Proteínas/metabolismo , Alelos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...