Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 52(3): 502-509, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36932855

RESUMO

Whiteflies of the Bemisia tabaci species complex are among the most damaging insect pests in agriculture worldwide, causing damage by feeding on crop plants and by vectoring plant viruses. The species complex consists of over 35 cryptic species that differ in many aspects of their biology including the optimal environment, geographic distribution, and host range. Global warming and associated climate change resulting from human activities is expected to contribute to biological invasions. Bemisia tabaci species show fast adaptability to changes in agroecosystems and have a long record of biological invasions. Climate change driven increase in B. tabaci importance in agricultural systems of Europe has been predicted, but so far not experimentally tested. The present study evaluates the development of B. tabaci MED (=Mediterranean) in a climatic chamber simulation of the future climate in Luxembourg, chosen as a representative region for the Central Europe. Future climate predictions for the period 2061-2070 were derived from a multimodel ensemble of physically consistent regional climatic models. Results show a 40% shorter development time of this important pest in future climatic conditions, with an increase in fecundity by a third, and insignificant difference in mortality. Accelerated development, combined with its already established year-round presence in European greenhouses and predicted northward expansion of outdoor tomato production in Europe, means faster population build-up at the beginning of the outdoor cropping season with the potential of reaching economic importance. Benefits of simulating hourly diurnal cycle of physically consistent meteorological variables versus previous experiments are discussed.


Assuntos
Hemípteros , Solanum lycopersicum , Humanos , Animais , Europa (Continente) , Agricultura , Mudança Climática
2.
Sci Rep ; 12(1): 20766, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456664

RESUMO

Whiteflies are among the most important global insect pests in agriculture; their sustainable control has proven challenging and new methods are needed. Bacterial symbionts of whiteflies are poorly understood potential target of novel whitefly control methods. Whiteflies harbour an obligatory bacterium, Candidatus Portiera aleyrodidarum, and a diverse set of facultative bacterial endosymbionts. Function of facultative microbial community is poorly understood largely due to the difficulty in their selective elimination without removal of the primary endosymbiont. Since the discovery of secondary endosymbionts, antibiotic rifampicin has emerged as the most used tool for their manipulation. Its effectiveness is however much less clear, with contrasting reports on its effects on the endosymbiont community. The present study builds upon most recent method of rifampicin application in whiteflies and evaluates its ability to eliminate obligatory Portiera and two facultative endosymbionts (Rickettsia and Arsenophnus). Our results show that rifampicin reduces but does not eliminate any of the three endosymbionts. Additionally, rifampicin causes direct negative effect on whiteflies, likely by disrupting mitochondria. Taken together, results signify the end of a rifampicin era in whitefly endosymbiont studies. Finally, we propose refinement of current quantification and data analysis methods which yields additional insights in cellular metabolic scaling.


Assuntos
Halomonadaceae , Hemípteros , Rickettsia , Animais , Rifampina/farmacologia , Antibacterianos/farmacologia
3.
J Pest Sci (2004) ; 95(2): 543-566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34744550

RESUMO

Whiteflies are sap-sucking insects responsible for high economic losses. They colonize hundreds of plant species and cause direct feeding damage and indirect damage through transmission of devastating viruses. Modern agriculture has seen a history of invasive whitefly species and populations that expand to novel regions, bringing along fierce viruses. Control efforts are hindered by fast virus transmission, insecticide-resistant populations, and a wide host range which permits large natural reservoirs for whiteflies. Augmentative biocontrol by parasitoids while effective in suppressing high population densities in greenhouses falls short when it comes to preventing virus transmission and is ineffective in the open field. A potential source of much needed novel control strategies lays within a diverse community of whitefly endosymbionts. The idea to exploit endosymbionts for whitefly control is as old as identification of these bacteria, yet it still has not come to fruition. We review where our knowledge stands on the aspects of whitefly endosymbiont evolution, biology, metabolism, multitrophic interactions, and population dynamics. We show how these insights are bringing us closer to the goal of better integrated pest management strategies. Combining most up to date understanding of whitefly-endosymbiont interactions and recent technological advances, we discuss possibilities of disrupting and manipulating whitefly endosymbionts, as well as using them for pest control.

4.
Insects ; 11(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287178

RESUMO

The red gum lerp psyllid, Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae), is an invasive pest of Eucalyptus trees worldwide, responsible for serious damage, including the death of plants. Knowledge about the incidence of climatic factors on the insect development are essential to define useful strategies for controlling this pest. To this aim, G. brimblecombei has been sampled by two different methods from April 2012 to February 2013 in eastern Sicily on Eucalyptus camaldulensis in nine different sites, where the main climatic data (air temperature, relative humidity, and precipitation) have been also registered. The Glycaspis brimblecombei population showed a similar trend in all nine sites, positively correlated only with air temperature, but a negative correlation has emerged with precipitation and relative humidity. The results show the need for a deeper understanding of the role played by other abiotic (such as different concentrations of CO2) and biotic (e.g., the antagonistic action of natural enemies, competition with other pests, etc.) factors. The greater sensitivity, even at low densities of psyllid, of sampling methods based on the random collection of a fixed number of leaves compared to methods based on the collection of infested leaves in a fixed time interval has been also outlined.

5.
Front Plant Sci ; 10: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723482

RESUMO

Whiteflies of the Bemisia tabaci species complex are economically important pests of cassava. In Africa, they cause greatest damage through vectoring viruses responsible for cassava mosaic disease and cassava brown streak disease. Several cryptic species from the B. tabaci complex colonize cassava and neighboring crops, but the feeding interactions between the different crops and B. tabaci species are unknown. The electrical penetration graph (EPG) technique makes it possible to conduct detailed feeding studies of sap-sucking insects by creating an electric circuit through the insect and the plant. The apparatus measures the voltage fluctuations while the wired-up insect feeds and produces graphs that describe feeding behavior. We utilized EPG to explore the feeding behavior of cassava-colonizing whiteflies (SSA1-SG3) on cassava, sweet potato, tomato, and cotton; and sweet potato-colonizing whiteflies (MED and IO) on cassava and sweet potato. Results show that: (1) feeding of SSA1-SG3 is not restricted to cassava. The least preferred host for SSA1-SG3 was tomato, where probing was delayed by 99 min compared to 10 min on other hosts, furthermore mean duration of phloem ingestion events was 36 min compared to 260 min on cassava. (2) Feeding of MED on cassava appeared to be non-functional, as it was characterized by short total phloem ingestion periods (<1 h) and few, short ingestion events, in contrast to feeding on sweet potato which was characterized by long phloem ingestion periods (>5 h). (3) Wire diameter affects the feeding in a statistically and practically significant manner. Implications for whitefly control and studies of host whitefly resistance are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...