Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Learn Mem ; 31(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038921

RESUMO

Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning.


Assuntos
Tomada de Decisões , Córtex Pré-Frontal , Ratos Long-Evans , Tomada de Decisões/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Masculino , Aprendizagem/fisiologia , Comportamento de Escolha/fisiologia , Recompensa , Ratos
2.
Hippocampus ; 34(3): 141-155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095152

RESUMO

During decisions that involve working memory, task-related information must be encoded, maintained across delays, and retrieved. Few studies have attempted to causally disambiguate how different brain structures contribute to each of these components of working memory. In the present study, we used transient optogenetic disruptions of rat medial prefrontal cortex (mPFC) during a serial spatial reversal learning (SSRL) task to test its role in these specific working memory processes. By analyzing numerous performance metrics, we found: (1) mPFC disruption impaired performance during only the choice epoch of initial discrimination learning of the SSRL task; (2) mPFC disruption impaired performance in dissociable ways across all task epochs (delay, choice, return) during flexible decision-making; (3) mPFC disruption resulted in a reduction of the typical vicarious-trial-and-error rate modulation that was related to changes in task demands. Taken together, these findings suggest that the mPFC plays an outsized role in working memory retrieval, becomes involved in encoding and maintenance when recent memories conflict with task demands, and enables animals to flexibly utilize working memory to update behavior as environments change.


Assuntos
Memória de Curto Prazo , Córtex Pré-Frontal , Ratos , Animais , Aprendizagem por Discriminação
3.
Front Syst Neurosci ; 17: 1187272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215359

RESUMO

A pillar of systems neuroscience has been the study of neural oscillations. Research into these oscillations spans brain areas, species, and disciplines, giving us common ground for discussing typically disparate fields of neuroscience. In this review, we aim to strengthen the dialog between sensory systems research and learning and memory systems research by examining a 15-40 Hz oscillation known as the beta rhythm. Starting with foundational observations based largely in olfactory systems neuroscience, we review evidence suggesting beta-based activity may extend across sensory systems generally, as well as into the hippocampus and areas well known for coordinating decisions and memory-guided behaviors. After evaluating this work, we propose a framework wherein the hippocampal beta oscillation and its diverse coupling with other brain areas can support both sensory learning and memory-guided decision-making. Using this framework, we also propose circuitries that may support these processes, and experiments to test our hypothesis.

4.
Front Neurosci ; 15: 676779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305517

RESUMO

Vicarious trial and error behaviors (VTEs) indicate periods of indecision during decision-making, and have been proposed as a behavioral marker of deliberation. In order to understand the neural underpinnings of these putative bridges between behavior and neural dynamics, researchers need the ability to readily distinguish VTEs from non-VTEs. Here we utilize a small set of trajectory-based features and standard machine learning classifiers to identify VTEs from non-VTEs for rats performing a spatial delayed alternation task (SDA) on an elevated plus maze. We also show that previously reported features of the hippocampal field potential oscillation can be used in the same types of classifiers to separate VTEs from non-VTEs with above chance performance. However, we caution that the modest classifier success using hippocampal population dynamics does not identify many trials where VTEs occur, and show that combining oscillation-based features with trajectory-based features does not improve classifier performance compared to trajectory-based features alone. Overall, we propose a standard set of features useful for trajectory-based VTE classification in binary decision tasks, and support previous suggestions that VTEs are supported by a network including, but likely extending beyond, the hippocampus.

5.
Hippocampus ; 31(7): 690-700, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33507595

RESUMO

Important interactions between memory and decision-making processes are required to maintain high-levels of spatial working memory task performance. Past research reveals that the medial prefrontal cortex (mPFC) and hippocampus (HPC) are both vital structures involved in these processes. Recent evidence suggests that interactions between these two structures are dynamic and task dependent. However, there exists uncertainty surrounding the specific conditions that recruit mPFC contributions to these tasks, specifically regarding its role in retaining information online during delay periods. To address this issue, we tested rats on a spatial-delayed alternation task in which we utilized a closed-loop optogenetic system to transiently disrupt mPFC activity during different task epochs (delay, choice, return). By analyzing the effects of mPFC disruption on choice accuracy and a deliberative behavior known as vicarious-trial-and-error (VTE), our study revealed several interesting findings regarding the role of the mPFC in spatial-working memory tasks. The main findings include: (a) choice accuracy in the spatial-delayed alternation (SDA) task was impaired when the mPFC was disrupted during the choice epoch and not delay or return epochs, (b) mPFC disruption resulted in a non-epoch specific reduction in VTE occurrence which correlated with impairments in task performance. Taken together, findings from this study suggest that, during spatial decision-making, contributions made by the mPFC are specific to points of deliberation and choice (not delay), and that VTEs are a deliberative behavior which relies on intact mPFC function.


Assuntos
Córtex Pré-Frontal , Memória Espacial , Animais , Hipocampo , Aprendizagem em Labirinto , Memória de Curto Prazo , Optogenética , Ratos
6.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33419862

RESUMO

Olfaction guides navigation and decision-making in organisms from multiple animal phyla. Understanding how animals use olfactory cues to guide navigation is a complicated problem for two main reasons. First, the sensory cues used to guide animals to the source of an odor consist of volatile molecules, which form plumes. These plumes are governed by turbulent air currents, resulting in an intermittent and spatiotemporally varying olfactory signal. A second problem is that the technologies for chemical quantification are cumbersome and cannot be used to detect what the freely moving animal senses in real time. Understanding how the olfactory system guides this behavior requires knowing the sensory cues and the accompanying brain signals during navigation. Here, we present a method for real-time monitoring of olfactory information using low-cost, lightweight sensors that robustly detect common solvent molecules, like alcohols, and can be easily mounted on the heads of freely behaving mice engaged in odor-guided navigation. To establish the accuracy and temporal response properties of these sensors we compared their responses with those of a photoionization detector (PID) to precisely controlled ethanol stimuli. Ethanol-sensor recordings, deconvolved using a difference-of-exponentials kernel, showed robust correlations with the PID signal at behaviorally relevant time, frequency, and spatial scales. Additionally, calcium imaging of odor responses from the olfactory bulbs (OBs) of awake, head-fixed mice showed strong correlations with ethanol plume contacts detected by these sensors. Finally, freely behaving mice engaged in odor-guided navigation showed robust behavioral changes such as speed reduction that corresponded to ethanol plume contacts.


Assuntos
Olfato , Navegação Espacial , Animais , Sinais (Psicologia) , Etanol , Camundongos , Odorantes
7.
PLoS One ; 13(3): e0194634, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543896

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0174171.].

8.
eNeuro ; 4(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932809

RESUMO

Transgenic mouse lines are invaluable tools for neuroscience but, as with any technique, care must be taken to ensure that the tool itself does not unduly affect the system under study. Here we report aberrant electrical activity, similar to interictal spikes, and accompanying fluorescence events in some genotypes of transgenic mice expressing GCaMP6 genetically encoded calcium sensors. These epileptiform events have been observed particularly, but not exclusively, in mice with Emx1-Cre and Ai93 transgenes, of either sex, across multiple laboratories. The events occur at >0.1 Hz, are very large in amplitude (>1.0 mV local field potentials, >10% df/f widefield imaging signals), and typically cover large regions of cortex. Many properties of neuronal responses and behavior seem normal despite these events, although rare subjects exhibit overt generalized seizures. The underlying mechanisms of this phenomenon remain unclear, but we speculate about possible causes on the basis of diverse observations. We encourage researchers to be aware of these activity patterns while interpreting neuronal recordings from affected mouse lines and when considering which lines to study.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/fisiopatologia , Epilepsia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios/fisiologia , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Doxiciclina/farmacologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Integrases , Camundongos , Camundongos Transgênicos
9.
PLoS One ; 12(3): e0174171, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28334022

RESUMO

The widespread usage of neonicotinoid insecticides has sparked concern over their effects on non-target organisms. While research has largely focused on terrestrial systems, the low soil binding and high water solubility of neonicotinoids, paired with their extensive use on the landscape, puts aquatic environments at high risk for contamination via runoff events. We assessed the potential threat of these compounds to wetland communities using a combination of field surveys and experimental exposures including concentrations that are representative of what invertebrates experience in the field. In laboratory toxicity experiments, LC50 values ranged from 0.002 ppm to 1.2 ppm for aquatic invertebrates exposed to clothianidin. However, freshwater snails and amphibian larvae showed high tolerance to the chemical with no mortality observed at the highest dissolvable concentration of the insecticide. We also observed behavioral effects of clothianidin. Water bugs, Belostoma flumineum, displayed a dose-dependent reduction in feeding rate following exposure to clothianidin. Similarly, crayfish, Orconectes propinquus, exhibited reduced responsiveness to stimulus with increasing clothianidin concentration. Using a semi-natural mesocosm experiment, we manipulated clothianidin concentration (0.6, 5, and 352 ppb) and the presence of predatory invertebrates to explore community-level effects. We observed high invertebrate predator mortality with increases in clothianidin concentration. With increased predator mortality, prey survival increased by 50% at the highest clothianidin concentration. Thus, clothianidin contamination can result in a top-down trophic cascade in a community dominated by invertebrate predators. In our Indiana field study, we detected clothianidin (max = 176 ppb), imidacloprid (max = 141 ppb), and acetamiprid (max = 7 ppb) in soil samples. In water samples, we detected clothianidin (max = 0.67 ppb), imidacloprid (max = 0.18 ppb), and thiamethoxam (max = 2,568 ppb). Neonicotinoids were detected in >56% of soil samples and >90% of the water samples, which reflects a growing understanding that neonicotinoids are ubiquitous environmental contaminants. Collectively, our results underscore the need for additional research into the effects of neonicotinoids on aquatic communities and ecosystems.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Guanidinas/toxicidade , Inseticidas/toxicidade , Tiazóis/toxicidade , Animais , Astacoidea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Larva/efeitos dos fármacos , Neonicotinoides , Ranidae , Poluição Química da Água/efeitos adversos , Áreas Alagadas
10.
Nat Chem Biol ; 11(10): 793-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26344696

RESUMO

The tremendous therapeutic potential of peptides has not yet been realized, mainly owing to their short in vivo half-life. Although conjugation to macromolecules has been a mainstay approach for enhancing protein half-life, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of peptides without compromising their potency. Our approach involves endowing peptides with a small molecule that binds reversibly to the serum protein transthyretin. Although there are a few molecules that bind albumin reversibly, we are unaware of designed small molecules that reversibly bind other serum proteins and are used for half-life extension in vivo. We show here that our strategy was effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy.


Assuntos
Benzoatos/química , Biomimética/métodos , Fragmentos de Peptídeos/química , Pré-Albumina/química , Pirazóis/química , Receptores LHRH/agonistas , Sequência de Aminoácidos , Animais , Benzoatos/sangue , Benzoatos/metabolismo , Benzoatos/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Meia-Vida , Células HeLa , Humanos , Ligantes , Masculino , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Pré-Albumina/metabolismo , Pré-Albumina/farmacologia , Ligação Proteica , Estabilidade Proteica , Pirazóis/sangue , Pirazóis/metabolismo , Pirazóis/farmacologia , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...