Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6088, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284091

RESUMO

E-cigarette use has surged, but the long-term health effects remain unknown. E-cigarette aerosols containing nicotine and acrolein, a combustion and e-cigarette byproduct, may impair cardiac electrophysiology through autonomic imbalance. Here we show in mouse electrocardiograms that acute inhalation of e-cigarette aerosols disturbs cardiac conduction, in part through parasympathetic modulation. We demonstrate that, similar to acrolein or combustible cigarette smoke, aerosols from e-cigarette solvents (vegetable glycerin and propylene glycol) induce bradycardia, bradyarrhythmias, and elevations in heart rate variability during inhalation exposure, with inverse post-exposure effects. These effects are slighter with tobacco- or menthol-flavored aerosols containing nicotine, and in female mice. Yet, menthol-flavored and PG aerosols also increase ventricular arrhythmias and augment early ventricular repolarization (J amplitude), while menthol uniquely alters atrial and atrioventricular conduction. Exposure to e-cigarette aerosols from vegetable glycerin and its byproduct, acrolein, diminish heart rate and early repolarization. The pro-arrhythmic effects of solvent aerosols on ventricular repolarization and heart rate variability depend partly on parasympathetic modulation, whereas ventricular arrhythmias positively associate with early repolarization dependent on the presence of nicotine. Our study indicates that chemical constituents of e-cigarettes could contribute to cardiac risk by provoking pro-arrhythmic changes and stimulating autonomic reflexes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Animais , Feminino , Camundongos , Acroleína/toxicidade , Aerossóis , Arritmias Cardíacas/induzido quimicamente , Glicerol , Mentol , Nicotina , Propilenoglicol , Solventes , Nicotiana , Verduras
2.
J Pineal Res ; 68(2): e12625, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31749228

RESUMO

Seasonally breeding animals concentrate courtship to a particular time of year such that their offspring will be reared in a favorable environment. In house sparrows, Passer domesticus, primary (gonads) and secondary (song, plumage, beak color, etc) sexual characteristics are expressed differentially depending on the photoperiod. Removal of the pineal gland (PINX) has no effect on seasonal rhythms in gonad size but alters the photostimulated increase in vocal rate and complexity. Administration of long durations of melatonin, indicative of short days of winter, prevents seasonal recrudescence of song control nuclei in photostimulated house sparrows. In this study, male PINX house sparrows were exposed to three durations of melatonin, while vocalization and locomotor behavior were recorded as they were transitioned from short photoperiod to equinoctial photoperiods of spring. Birds receiving short duration melatonin or vehicle control increased dawn and dusk choruses as well as call complexity. Long durations of melatonin prevented this expansion to a spring-like vocal state observed in birds receiving the short duration of melatonin or vehicle control. The daily distribution of locomotor activity, beak color, and testis size was unaffected by treatment. Vocal state change was defined by our measures in two capacities: (i) increased dawn and dusk choruses, and (ii) an increase in calls associated with territory and mate attraction compared to the winter-like "social song." We conclude that house sparrows use the calendar information provided by melatonin duration to control seasonal vocalization behavior, independent of effects on and of the gonads.


Assuntos
Melatonina/farmacologia , Fotoperíodo , Pardais , Vocalização Animal/efeitos dos fármacos , Animais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...