Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(27): eadl5822, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959317

RESUMO

The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Eucalyptus , Florestas , Fósforo , Eucalyptus/metabolismo , Dióxido de Carbono/metabolismo , Fósforo/metabolismo , Fotossíntese , Mudança Climática , Ecossistema , Carbono/metabolismo , Modelos Teóricos , Sequestro de Carbono
2.
Nature ; 630(8017): 660-665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839955

RESUMO

The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3-6), but uncertainty about ecosystem P cycling and its CO2 response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change7. Here, by compiling the first comprehensive P budget for a P-limited mature forest exposed to elevated CO2, we show a high likelihood that P captured by soil microorganisms constrains ecosystem P recycling and availability for plant uptake. Trees used P efficiently, but microbial pre-emption of mineralized soil P seemed to limit the capacity of trees for increased P uptake and assimilation under elevated CO2 and, therefore, their capacity to sequester extra C. Plant strategies to stimulate microbial P cycling and plant P uptake, such as increasing rhizosphere C release to soil, will probably be necessary for P-limited forests to increase C capture into new biomass. Our results identify the key mechanisms by which P availability limits CO2 fertilization of tree growth and will guide the development of Earth system models to predict future long-term C storage.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Florestas , Fósforo , Microbiologia do Solo , Árvores , Biomassa , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Fósforo/metabolismo , Rizosfera , Solo/química , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Mudança Climática
3.
Chemosphere ; 362: 142699, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944354

RESUMO

Predicting the parameters that influence colloidal phosphorus (CP) release from soils under different land uses is critical for managing the impact on water quality. Traditional modeling approaches, such as linear regression, may fail to represent the intricate relationships that exist between soil qualities and environmental influences. Therefore, in this study, we investigated the major determinants of CP release from different land use/types such as farmland, desert, forest soils, and rivers. The study utilizes the structural equation model (SEM), multiple linear regression (MLR), and three machine learning (ML) models (Random Forest (RF), Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGBoost)) to predict the release of CP from different soils by using soil iron (Fe), aluminum (Al), calcium (Ca), pH, total organic carbon (TOC) and precipitation as independent variables. Results show that colloidal-cations (Fe, Al, Ca) and colloidal-TOC strongly influence CP release, while bioclimatic variables (precipitation) and pH have weaker effects. XGBoost outperforms the other models with an R2 of 0.94 and RMSE of 0.09. SHapley Additive Explanations described the outcomes since XGBoost is accurate. The relative relevance ranking indicated that colloidal TOC had the highest ranking in predicting CP. This was supported by the analysis of partial dependence plots, which showed that an increase in colloidal TOC increased soil CP release. According to our research, the SHAP XGBoost model provides significant information that can help determine the variables that considerably influence CP contents as compared to RF, SVM, and MLR.

4.
Sci Total Environ ; 905: 166950, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37696405

RESUMO

Biochar is a soil amendment that can change soil's physical and hydraulic properties. However, biochar application is far from being a 'one size fits-all' approach. The impact of the management practices is dependent on biochar type (feedstock and production conditions), application depth and method, climate and site characteristics. Hence, this study aims to enrich the available inconclusive information on how biochar could affect clay loamy soil and to assess the potential impact of the induced change on water stress mitigation of rain-fed durum wheat under the specific condition of the semi-arid environment of North West of Tunisia. A field experiment was investigated in which three biochar rates 0 (B0), 10 (equivalent to 0.5% of weight) (B1) and 20 t/ha (equivalent to 1% of weight), (B2), were tested. Other laboratory analysis allowed the evaluation of soil water retention curve (SWRC), saturated hydraulic conductivity (Ks), dry density (ρb) and biostress biomarkers such as glutathione-S-transferase (GST), catalase activities (CAT) and malondialdehyde content (MDA) as well as yield attributes. Results showed that treatment B2 significantly decreased ρb and Ks with relative change values of about -3.1% and -19%. Consequently, SWRC showed a better water retention capacity, mostly from saturation to matric potential value (h) of 33 kPa. Total (TAWC), plant (PAWC) and readily (RAWC) available water contents, significantly increased under B2 with relative changes of +6%, +44% and +44% respectively. Moreover, GST and CAT were also boosted under B2. Consequently, biological and grain yields as well as grain water use efficiency (GWUE) significantly increased. GWUE increased from 0.81 ± 0.04 in B0 to 1.09 ± 0.01 kg/m3 in B2. The correlation analysis showed a significant and positive correlation, between GWUE and soil water parameters (θs, θfc and θmre) suggesting the indirect effect of biochar on water-use efficiency for grain yield of wheat. Therefore, among the tested rates 20 t/ha could be suggested to improve plant soil water availability and reduce the harmful impact of drought stress on rain-fed durum wheat.


Assuntos
Antioxidantes , Desidratação , Carvão Vegetal/farmacologia , Solo , Produtos Agrícolas , Grão Comestível
5.
Plants (Basel) ; 12(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36840186

RESUMO

Rice (Oryza sativa L.) has inherently low concentrations of nitrogen (N) and zinc (Zn), and those concentrations are falling as the atmospheric concentration of carbon dioxide ([CO2]) increases, threatening the quality of human diets. We investigated the effect of two levels of Zn supply (marginal and luxury), on Zn and N concentrations in whole grain of two indica rice cvv. Differing in Zn-efficiency (IR26 (inefficient) and IR36 (efficient)), grown in sand culture at ambient (400 µL CO2 L-1 (a[CO2])) and elevated (700 µL CO2 L-1 (e[CO2])) CO2 concentrations. For both cvv., luxury Zn-supply increased vegetative growth, and the foliar and grain Zn concentrations; the increases in grain yield were greater at e[CO2]. The e[CO2] decreased grain Zn concentrations ([Zn]), as is consistently observed in other studies. However, unique to our study, luxury Zn-supply maintained grain N concentrations at e[CO2]. Our data also show that enhanced Zn uptake is the basis of the greater Zn-efficiency of IR36. Lastly, luxury Zn-supply and e[CO2] appreciably decreased the time to panicle emergence and, consequently, to maturity in both cvv. Since Zn-supply can be manipulated by both soil and foliar applications, these findings are potentially important for the quality and quantity of the global rice supply. That is, further investigation of our findings is justified. Key message: Luxury zinc supply maintains grain N concentration at 700 µL CO2 L-1.

6.
Sci Total Environ ; 858(Pt 3): 160195, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379330

RESUMO

Mobile colloids impact phosphorus (P) binding and transport in agroecosystems. However, their relationship to P-lability and their relative importance to P-bioavailability is unclear. In soils amended with organic fertilisers, we investigated the effects of nano (NC; 1-20 nm), fine (FC; 20-220 nm), and medium (MC; 220-450 nm) colloids suspended in soil solution on soil P-desorption and lability. The underlying hypothesis is that mobile colloids of different sizes, i.e., NC, FC, and MC, may contribute differently to P-lability in soils enriched with organic fertiliser. NC- and FC-bound Pcoll were positively correlated with P-lability parameters from diffusive gradient in thin films (DGTA-labile P concentration, r ≥ 0.88; and DGTA-effective P concentration, r ≥ 0.87). The corresponding relations with MC-bound Pcoll are weaker (r values of 0.50 and 0.51). NC- and FC-bound Pcoll were also strongly correlated with soil P-resupply (r ≥ 0.64) and desorption (r ≥ 0.79) parameters during DGTA deployment, and the mobility of these colloids was corroborated by electron microscopy of DGTA gels. MC-bound Pcoll was negatively correlated with the solid-to-solution distribution coefficient (r = -0.42), indicating this fraction is unlikely to be the source of P-release from the solid phase after P-depletion from the soil solution. We conclude that NC and FC mainly contribute to regulating soil desorbable-P supply to the soil solution in the DGTA depletion zone (in vitro proxy for plant rhizosphere), and consequently may act as critical conditioners of P-bioavailability, whereas MC tends to form complexes that lead to P-occlusion rather than lability.


Assuntos
Fósforo , Solo
7.
Ecotoxicol Environ Saf ; 247: 114217, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306613

RESUMO

Excessively high concentrations of selenium (Se) in soil are toxic to crop plants, and inoculation with arbuscular mycorrhizal fungi (AMF) can reverse Se stress in maize (Zea mays L.). To investigate the underlying mechanisms, maize seedlings were treated with sodium selenate (5 mg Se[VI] kg-1) and/or AMF (Funneliformis mosseae and Claroideoglomus etunicatum). Dual RNA sequencing in mycorrhiza and 16 S ribosomal DNA sequencing in soil were performed. The results showed that Se(VI) application alone decreased plant dry weight, but increased plant Se concentration, total Se content (mainly selenocysteine), and root superoxide content. Inoculation with either F. mosseae or C. etunicatum increased plant dry weight, decreased Se accumulation and selenocysteine proportion, enhanced root peroxidase activity, and alleviated oxidative stress in Se(VI)-treated plants. Inoculation also downregulated the expression of genes encoding Se transporters, assimilation enzymes, and cysteine-rich receptor-like kinases in Se(VI)-stressed plants, similar to plant-pathogen interaction and glutathione metabolism related genes. Conversely, genes encoding selenium-binding proteins and those related to phenylpropanoid biosynthesis were upregulated in inoculated plants under Se(VI) stress. Compared with Se(VI)-free plants, Se tolerance index, symbiotic feedback percentage on plant dry weight, and root colonization rate were all increased in inoculated plants under Se(VI) stress, corresponding to upregulated expression of 'key genes' in symbiosis. AMF inoculation increased bacterial diversity, decreased the relative abundances of selenobacteria related to plant Se absorption (e.g., Proteobacteria and Firmicutes), and improved bacterial network complexity in Se(VI)-stressed soils. We suggest that stress-mediated enhancement of mycorrhizal symbiosis contributed to plant Se(VI) tolerance, whereas AMF-mediated reshaping of soil bacterial community structure prevented excessive Se accumulation in maize.


Assuntos
Microbiota , Micorrizas , Selênio , Micorrizas/química , Zea mays/metabolismo , Solo/química , Ácido Selênico/metabolismo , DNA Ribossômico , RNA/metabolismo , Selenocisteína/metabolismo , Raízes de Plantas/metabolismo , Microbiota/genética , Plantas , Selênio/metabolismo , Análise de Sequência de DNA
8.
Sci Total Environ ; 845: 157278, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835199

RESUMO

The manure fertilizer increases the phosphorus (P) saturation of soils and the colloidal P release to water bodies. Manure of different particle-sizes may have different effects on colloidal P release by soil, and to date there is limited knowledge on colloidal P release from soils amended with different size manures. We produced sheep micro- (SMicro) and nano-manure (SNano), and poultry micro- (PMicro), nano-manure (PNano) from bulk samples by wet fractionation method. The fractionation reduced the P contents of micro- and nano-manures, and enriched them in ash and calcium, iron (Fe), magnesium, and aluminum (Al) phosphate minerals compared with the bulk manures. The degree of P saturation (DPS) in Anthorsol and Cambisol was decreased (SMicro, 17.6 and 17.2 %; SNano, 14.5 and 13.3 % and PMicro, 19.0 and 19.7 mg kg-1; PNano, 17.0 and 14.3 mg kg-1) and released less colloidal P (SMicro, 3.12 and 3.78 mg kg-1; SNano, 3.01 and 3.56 mg kg-1 and PMicro, 3.34 and 3.92 mg kg-1; PNano, 3.21 and 3.65 mg kg-1) than the soils receiving the bulk manures. The decrease in colloidal P was correlated with less DPS in both soils amended with micro and nano manures. That is, the only measurable effect of manure particle size on colloidal P release from the amended soils was due to chemical fractionation during separation of the size fractions. It was suggested that nano and micro manures were the effective approach to reduce colloidal P release from manure amended soils.


Assuntos
Esterco , Solo , Agricultura , Animais , Fertilizantes , Fósforo , Ovinos
9.
Physiol Plant ; 174(1): e13612, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34970752

RESUMO

Zinc (Zn) is an important micronutrient in the human body, and health complications associated with insufficient dietary intake of Zn can be overcome by increasing the bioavailable concentrations in edible parts of crops (biofortification). Wheat (Triticum aestivum L) is the most consumed cereal crop in the world; therefore, it is an excellent target for Zn biofortification programs. Knowledge of the physiological and molecular processes that regulate Zn concentration in the wheat grain is restricted, inhibiting the success of genetic Zn biofortification programs. This review helps break this nexus by advancing understanding of those processes, including speciation regulated uptake, root to shoot transport, remobilisation, grain loading and distribution of Zn in wheat grain. Furthermore, new insights to genetic Zn biofortification of wheat are discussed, and where data are limited, we draw upon information for other cereals and Fe distribution. We identify the loading and distribution of Zn in grain as major bottlenecks for biofortification, recognising anatomical barriers in the vascular region at the base of the grain, and physiological and molecular restrictions localised in the crease region as major limitations. Movement of Zn from the endosperm cavity into the modified aleurone, aleurone and then to the endosperm is mainly regulated by ZIP and YSL transporters. Zn complexation with phytic acid in the aleurone limits Zn mobility into the endosperm. These insights, together with synchrotron-X-ray-fluorescence microscopy, support the hypothesis that a focus on the mechanisms of Zn loading into the grain will provide new opportunities for Zn biofortification of wheat.


Assuntos
Biofortificação , Triticum , Grão Comestível , Endosperma , Triticum/genética , Zinco
10.
Environ Sci Pollut Res Int ; 29(9): 13142-13153, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34570322

RESUMO

Phosphorus (P) is limiting nutrient in many soils, and P availability may often depend on iron (Fe) speciation. Colloidal iron phosphate (FePO4coll) is potentially present in soils, and we tested the hypothesis that phytate exudation by Pteris vittata might dissolve FePO4coll by growing the plant in nutrient solution to which FePO4coll was added. The omission of P and Fe increased phytate exudation by P. vittata from 434 to 2136 mg kg-1 as the FePO4coll concentration increased from 0 to 300 mM. The total P in P. vittata tissue increased from 2880 to 8280 mg kg-1, and the corresponding increases in the trichloroacetic acid (TCA) extractable P fractions were inorganic P (860-5100 mg kg-1), soluble organic P (250-870 mg kg-1), and insoluble organic P (160-2030 mg kg-1). That is, FePO4-solubilizing activity was positive correlated with TP, TCA P fractions in P. vittata, TP in growth media, and root exudates. This study shows that phytate exudation dissolved FePO4coll due to the chelation effect of phytic acid on Fe; however, the wider question of whether phytic acid excretion was prompted by deprivation of P, Fe, or both remains to be answered.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/análise , Ácido Fítico , Raízes de Plantas/química , Poluentes do Solo/análise
11.
Funct Plant Biol ; 49(2): 115-131, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898425

RESUMO

Photosynthesis in wheat (Triticum aestivum L.) pericarps may contribute appreciably to wheat grain yield. Consequently, we investigated the temporal variation of traits related to photosynthesis and sucrose metabolism in the pericarps and flag leaves of three wheat genotypes, Huandoy, Amurskaja 75 and Greece 25, which are reported to differ in expression of genes related to the C4 pathway in wheat grain. Significant site-specific, genotypic and temporal variation in the maximum carboxylation rate (Vc max ) and maximum rates of electron transport (J max ) (biological capacity of carbon assimilation) were observed early in ontogeny that dissipated by late grain filling. Although the transcript abundance of rbcS and rbcL in flag leaves was significantly higher than in the pericarps, in line with their photosynthetic prominence, both organ types displayed similar expression patterns among growth stages. The higher N concentrations in the pericarps during grain enlargement suggest increased Rubisco; however, expression of rbcS and rbcL indicated the contrary. From heading to 14days post-anthesis, wheat pericarps exhibited a strong, positive correlation between biological capacity for carbon assimilation and expression of key genes related to sucrose metabolism (SPS1 , SUS1 and SPP1 ). The strong correlation between spike dry weight and the biological capacity for carbon assimilation along with other findings of this study suggest that metabolic processes in wheat spikes may play a major role in grain filling, total yield and quality.


Assuntos
Fotossíntese , Triticum , Genótipo , Fotossíntese/genética , Folhas de Planta/genética , Ribulose-Bifosfato Carboxilase/genética , Triticum/genética
12.
J Environ Manage ; 304: 114214, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34864519

RESUMO

The agricultural use of manure fertilizer increases the phosphorus (P) saturation of soils and the risk of colloidal P (Pcoll) release to aquatic ecosystems. Two experiments were conducted to identify whether Pteris vittata plantation can decrease Pcoll contents in two soils (Cambisol and Anthrosol) amended with various manure P rates (0, 10, 25, and 50 mg P kg-1 of soil). The total Pcoll contents in manured soil without P. vittata were 1.14-3.37 mg kg-1 (Cambisol), and 0.01-2.83 mg kg-1 (Anthrosol) across manure-P rates. The corresponding values with P. vittata were 0.97-2.33 mg kg-1 (Cambisol) and 0.005-1.6 mg kg-1 (Anthrosol). Experimentally determined colloidal minerals (Fe, Al, Ca), colloidal total organic carbon, Mehlich-3 nutrients (Fe, Al, and Ca), and the degree of P saturation were good predictors of Pcoll concentrations in both soils with and without P. vittata plantation. In unplanted soils, P adsorption decreased and the degree of P saturation increased which released more Pcoll. However, P. vittata plantation decreased the Pcoll release and P loss risk due to the increase of P adsorption and reduced DPS in both soils. The P fractions (NaOH, NH4F, and HCl-P) contributed to increase the P pool in planted soils which enhanced the bioavailability of Pcoll and increased the P. vittata biomass. It suggested that P. vittata plantation was an effective approach to reduce Pcoll release from manure amended soils.


Assuntos
Esterco , Pteris , Ecossistema , Fósforo , Solo
13.
Physiol Plant ; 172(3): 1594-1608, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33619741

RESUMO

Wild rice Oryza rufipogon, a progenitor of cultivated rice Oryza sativa L., possesses superior salinity tolerance and is a potential donor for breeding salinity tolerance traits in rice. However, a mechanistic basis of salinity tolerance in this donor species has not been established. Here, we examined salinity tolerance from the early vegetative stage to maturity in O. rufipogon in comparison with a salt-susceptible (Koshihikari) and a salt-tolerant (Reiziq) variety of O. sativa. We assessed their phylogeny and agronomical traits, photosynthetic performance, ion contents, as well as gene expression in response to salinity stress. Salt-tolerant O. rufipogon exhibited efficient leaf photosynthesis and less damage to leaf tissues during the course of salinity treatment. In addition, O. rufipogon showed a significantly higher tissue Na+ accumulation that is achieved by vacuolar sequestration compared to the salt tolerant O. sativa indica subspecies. These findings are further supported by the upregulation of genes involved with ion transport and sequestration (e.g. high affinity K+ transporter 1;4 [HKT1;4], Na+ /H+ exchanger 1 [NHX1] and vacuolar H+ -ATPase c [VHA-c]) in salt-tolerant O. rufipogon as well as by the close phylogenetic relationship of key salt-responsive genes in O. rufipogon to these in salt-tolerant wild rice species such as O. coarctata. Thus, the high accumulation of Na+ in the leaves of O. rufipogon acts as a cheap osmoticum to minimize the high energy cost of osmolyte biosynthesis and excessive reactive oxygen species production. These mechanisms demonstrated that O. rufipogon has important traits that can be used for improving salinity tolerance in cultivated rice.


Assuntos
Oryza , Oryza/genética , Filogenia , Salinidade , Tolerância ao Sal , Sódio
14.
Tree Physiol ; 39(11): 1821-1837, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31728540

RESUMO

Eucalypts are likely to play a critical role in the response of Australian forests to rising atmospheric CO2 concentration ([CO2]) and temperature. Although eucalypts are frequently phosphorus (P) limited in native soils, few studies have examined the main and interactive effects of P availability, [CO2] and temperature on eucalypt morphology, physiology and anatomy. To address this issue, we grew seedlings of Eucalyptus tereticornis Smith across its P-responsive range (6-500 mg kg-1) for 120 days under two [CO2] (ambient: 400 µmol mol-1 (Ca) and elevated: 640 µmol mol-1 (Ce)) and two temperature (ambient: 24/16 °C (Ta) and elevated: 28/20 °C (Te) day/night) treatments in a sunlit glasshouse. Seedlings were well-watered and supplied with otherwise non-limiting macro- and micro-nutrients. Increasing soil P supply increased growth responses to Ce and Te. At the highest P supplies, Ce increased total dry mass, leaf number and total leaf area by ~50%, and Te increased leaf number by ~40%. By contrast, Ce and Te had limited effects on seedling growth at the lowest P supply. Soil P supply did not consistently modify photosynthetic responses to Ce or Te. Overall, effects of Ce and Te on growth, physiological and anatomical responses of E. tereticornis seedlings were generally neutral or negative at low soil P supply, suggesting that native tree responses to future climates may be relatively small in native low-P soils in Australian forests.


Assuntos
Dióxido de Carbono , Eucalyptus , Austrália , Mudança Climática , Fósforo , Fotossíntese , Folhas de Planta , Plântula , Solo , Temperatura
15.
Environ Sci Technol ; 53(17): 10131-10138, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31418551

RESUMO

Acid-soluble soil phosphorus (P) is a potential resource in P-limited agricultural systems that may become critical as global P sources decrease in the future. The fate of P in three alkaline Vertisols, a major agricultural soil type, after acidic incubation was investigated using synchrotron-based K-edge X-ray absorption near-edge structure (XANES) spectroscopy, geochemical modeling, wet chemistry soil extraction, and a P sorption index. Increases in labile P generally coincided with decreased stability and dissolution of calcium phosphate (CaP) minerals. However, only a minor proportion of the CaP dissolved in each soil was labile. In two moderate-P soils (800 mg P kg-1), XANES indicated that approximately 160 mg kg-1 was repartitioned to sorbed phases at pH 5.1 of one soil and at pH 4.4 of the second; however, only 40 and 28% were labile, respectively. In a high-P soil (8900 mg P kg-1), XANES indicated a decrease in P of 1170 mg kg-1 from CaP minerals at pH 3.8, of which approximately only 33% was labile. Phosphorus mobilized by agricultural practices without concurrent uptake by plants may be repartitioned to sorbed forms that are not as plant-available as prior to acidification.


Assuntos
Poluentes do Solo , Solo , Agricultura , Fosfatos de Cálcio , Fosfatos , Fósforo , Espectroscopia por Absorção de Raios X
16.
Planta ; 250(4): 1033-1050, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254100

RESUMO

MAIN CONCLUSION: Site-specific changes of photosynthesis, a relatively new concept, can be used to improve the productivity of critical food crops to mitigate the foreseen food crisis. Global food security is threatened by an increasing population and the effects of climate change. Large yield improvements were achieved in major cereal crops between the 1950s and 1980s through the Green Revolution. However, we are currently experiencing a significant decline in yield progress. Of the many approaches to improved cereal yields, exploitation of the mode of photosynthesis has been intensely studied. Even though the C4 pathway is considered the most efficient, mainly because of the carbon concentrating mechanisms around the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, which minimize photorespiration, much is still unknown about the specific gene regulation of this mode of photosynthesis. Most of the critical cereal crops, including wheat and rice, are categorized as C3 plants based on the photosynthesis of major photosynthetic organs. However, recent findings raise the possibility of different modes of photosynthesis occurring at different sites in the same plant and/or in plants grown in different habitats. That is, it seems possible that efficient photosynthetic traits may be expressed in specific organs, even though the major photosynthetic pathway is C3. Knowledge of site-specific differences in photosynthesis, coupled with site-specific regulation of gene expression, may therefore hold a potential to enhance the yields of economically important C3 crops.


Assuntos
Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Fotossíntese/genética , Triticum/fisiologia , Evolução Biológica , Mudança Climática , Produtos Agrícolas , Grão Comestível , Engenharia Genética , Variação Genética , Oryza/genética , Triticum/genética
17.
Front Plant Sci ; 7: 764, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375636

RESUMO

Though rice is the predominant source of energy and micronutrients for more than half of the world population, it does not provide enough zinc (Zn) to match human nutritional requirements. Moreover, climate change, particularly rising atmospheric carbon dioxide concentration, reduces the grain Zn concentration. Therefore, rice biofortification has been recognized as a key target to increase the grain Zn concentration to address global Zn malnutrition. Major bottlenecks for Zn biofortification in rice are identified as low Zn uptake, transport and loading into the grain; however, environmental and genetic contributions to grain Zn accumulation in rice have not been fully explored. In this review, we critically analyze the key genetic, physiological and environmental factors that determine Zn uptake, transport and utilization in rice. We also explore the genetic diversity of rice germplasm to develop new genetic tools for Zn biofortification. Lastly, we discuss the strategic use of Zn fertilizer for developing biofortified rice.

18.
Environ Sci Technol ; 50(8): 4229-37, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26974327

RESUMO

Calcium phosphate (CaP) minerals may comprise the main phosphorus (P) reserve in alkaline soils, with solubility dependent on pH and the concentration of Ca and/or P in solution. Combining several techniques in a novel way, we studied these phenomena by progressively depleting P from suspensions of two soils (low P) using an anion-exchange membrane (AEM) and from a third soil (high P) with AEM together with a cation-exchange membrane. Depletions commenced on untreated soil, then continued as pH was manipulated and maintained at three constant pH levels: the initial pH (pHi) and pH 6.5 and 5.5. Bulk P K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the main forms of inorganic P in each soil were apatite, a second more soluble CaP mineral, and smectite-sorbed P. With moderate depletion of P at pHi or pH 6.5, CaP minerals became more prominent in the spectra compared to sorbed species. The more soluble CaP minerals were depleted at pH 6.5, and all CaP minerals were exhausted at pH 5.5, showing that the CaP species present in these alkaline soils are soluble with decreases of pH in the range achievable by rhizosphere acidification.


Assuntos
Fosfatos de Cálcio/química , Solo/química , Concentração de Íons de Hidrogênio , Membranas Artificiais , Minerais , Fósforo/química , Rizosfera , Soluções , Espectroscopia por Absorção de Raios X
19.
Environ Sci Pollut Res Int ; 23(6): 5296-306, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26564184

RESUMO

Cadmium is a cumulative, chronic toxicant in humans for which the main exposure pathway is via plant foods. Cadmium-tolerant plants may be used to create healthier food products, provided that the tolerance is associated with the exclusion of Cd from the edible portion of the plant. An earlier study identified the cabbage (Brassica oleracea L.) variety, Pluto, as relatively Cd tolerant. We exposed the roots of intact, 4-week-old seedlings of Pluto to Cd (control ∼1 mg L(-1) treatment 500 µg L(-1)) for 4 weeks in flowing nutrient solutions and observed plant responses. Exposure began when leaf 3 started to emerge, plants were harvested after 4 weeks of Cd exposure and the high Cd treatment affected all measured parameters. The elongation rate of leaves 4-8, but not the duration of elongation was reduced; consequently, individual leaf area was also reduced (P < 0.001) and total leaf area and dry weight were approximately halved. A/C i curves immediately before harvest showed that Cd depressed the photosynthetic capacity of the last fully expanded leaf (leaf 5). Despite such large impairments of the source and sink capacities, specific leaf weight and the partitioning of photosynthate between roots, stems and leaves were unaffected (P > 0.1). Phytochelatins (PCs) and glutathione (GSH) were present in the roots even at the lowest Cd concentration in the nutrient medium, i.e. ∼1 µg Cd L(-1), which would not be considered contaminated if it were a soil solution. The Cd concentration in these roots was unexpectedly high (5 mg kg(-1) DW) and the molar ratio of -SH (in PCs plus GSH) to Cd was large (>100:1). In these control plants, the Cd concentration in the leaves was 1.1 mg kg(-1) DW, and PCs were undetectable. For the high Cd treatment, the concentration of Cd in roots exceeded 680 mg kg(-1) DW and the molar -SH to Cd ratio fell to ∼1.5:1. For these plants, Cd flooded into the leaves (107 mg kg(-1) DW) where it probably induced synthesis of PCs, and the molar -SH to Cd ratio was ∼3:1. Nonetheless, this was insufficient to sequester all the Cd, as evidenced by the toxic effects on photosynthesis and growth noted above. Lastly, Cd accumulation in the leaves was associated with lowered concentrations of some trace elements, such as Zn, a combination of traits that is highly undesirable in food plants.


Assuntos
Adaptação Fisiológica , Brassica , Cádmio , Produtos Agrícolas , Folhas de Planta , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/fisiologia , Cádmio/metabolismo , Cádmio/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Folhas de Planta/química , Folhas de Planta/metabolismo
20.
J Environ Qual ; 37(2): 417-28, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18268305

RESUMO

Fertilizer phosphorus (P) and grazing-related factors can influence runoff P concentrations from grazed pastures. To investigate these effects, we monitored the concentrations of P in surface runoff from grazed dairy pasture plots (50 x 25 m) treated with four fertilizer P rates (0, 20, 40, and 80 kg ha(-1) yr(-1)) for 3.5 yr at Camden, New South Wales. Total P concentrations in runoff were high (0.86-11.13 mg L(-1)) even from the control plot (average 1.94 mg L(-1)). Phosphorus fertilizer significantly (P < 0.001) increased runoff P concentrations (average runoff P concentrations from the P(20), P(40), and P(80) treatments were 2.78, 3.32, and 5.57 mg L(-1), respectively). However, the magnitude of the effect of P fertilizer varied between runoff events (P < 0.01). Further analysis revealed the combined effects on runoff P concentration of P rate, P rate x number of applications (P < 0.001), P rate x time since fertilizer (P < 0.001), dung P (P < 0.001), time since grazing (P < 0.05), and pasture biomass (P < 0.001). A conceptual model of the sources of P in runoff comprising three components is proposed to explain the mobilization of P in runoff and to identify strategies to reduce runoff P concentrations. Our data suggest that the principal strategy for minimizing runoff P concentrations from grazed dairy pastures should be the maintenance of soil P at or near the agronomic optimum by the use of appropriate rates of P fertilizer.


Assuntos
Indústria de Laticínios , Fertilizantes , Fósforo/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Animais , Bovinos , Indústria de Laticínios/métodos , Feminino , Esterco/análise , Chuva , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...