Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567124

RESUMO

The study aimed to determine the changes in phenolic compounds content in lettuce (Lactuca sativa L. cv. Little Gem) depending on the preharvest short-term daytime or nighttime supplemental light-emitting diodes (LEDs) to high-pressure sodium lamps (HPS) lighting in a greenhouse during autumn and spring cultivation. Plants were grown in a greenhouse under HPS supplemented with 400 nm, 455 nm, 530 nm, 455 + 530 nm or 660 nm LEDs light for 4 h five days before harvest. Two experiments (EXP) were performed: EXP1-HPS, and LEDs treatment during daytime 6 PM-10 PM, and EXP2-LEDs treatment at nighttime during 10 AM-2 PM. LEDs' photosynthetic photon flux density (PPFD) was 50 and HPS-90 ± 10 µmol m-2 s-1. The most pronounced positive effect on total phenolic compounds revealed supplemental 400 and 455 + 530 nm LEDs lighting, except its application during the daytime at spring cultivation, when all supplemental LEDs light had no impact on phenolics content variation. Supplemental 400 nm LEDs applied in the daytime increased chlorogenic acid during spring and chicoric acid during autumn cultivation. 400 nm LEDs used in nighttime enhanced chlorogenic acid accumulation and rutin during autumn. Chicoric and chlorogenic acid significantly increased under supplemental 455 + 530 nm LEDs applied at daytime in autumn and used at nighttime-in spring. Supplemental LEDs application in the nighttime resulted in higher phenolic compounds content during spring cultivation and the daytime during autumn cultivation.

2.
Front Plant Sci ; 13: 1098048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684802

RESUMO

Essential oils and extracts are investigated in sustainable plant protection area lately. Alternative antifungal substances are especially relevant for major economic-relevance pathogens, like Botrytis cinerea (causal agent of strawberry grey mold), control. However, the reaction of plants to alternative protection with plant-origin products is currently unknown. Induced stress in plants causes changes in antioxidant and photosynthetic systems. The aim of the research was to determine the defense response of strawberry plants under application of coriander seed products. In the first step of the research, we determined coriander seed (Coriandrum sativum), black seed (Nigella sativa) and peppermint leaf (Menta × piperita) products' antifungal activity against B. cinerea in vitro. Secondly, we continued evaluation of antifungal activity under controlled environment on strawberry plants of the most effective coriander seed products. Additionally, we evaluated the antioxidant and photosynthetic parameters in strawberries, to examine the response of plants. Antifungal activity on strawberries was determined based on grey mold incidence and severity after application of coriander products. Impact on photosynthetic system was examined measuring photosynthetic rate, transpiration rate, stomatal conductance, and intercellular to ambient CO2 concentration. Strawberry leaves were collected at the end of the experiment to analyze the antioxidant response. The highest antifungal activity both in vitro and on strawberries had coriander seed essential oil, which decreased grey mold severity. Coriander extract increased the photosynthetic capacity and antioxidant response of strawberry plants, however had negative effect on suppression of grey mold. In most cases, the essential oil activated antioxidant response of strawberry plants lower than extract. Our study results provide no direct impact of increased photosynthetic capacity values and antifungal effect after treatment with natural oils. The highest concentrations of coriander essential oil and extract potentially demonstrated a phytotoxic effect.

3.
Plants (Basel) ; 10(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921895

RESUMO

The consumption of microgreens has increased due to their having higher levels of bioactive compounds and mineral nutrients than mature plants. The lighting conditions during the cultivation of microgreens, if optimally selected, can have a positive effect by further increasing their nutritional value. Thus, our study aimed to determine the changes in mineral nutrients contents of Brassicaceae microgreens depending on different blue-red (B:R) light ratios in light-emitting diode (LED) lighting and to evaluate their growth and nutritional value according to different indexes. Experiments were performed in controlled environment growth chambers at IH LRCAF, 2020. Microgreens of mustard (Brassica juncea 'Red Lace') and kale (Brassica napus 'Red Russian') were grown hydroponically under different B:R light ratios: 0%B:100%R, 10%B:90%R, 25%B:75%R, 50%B:50%R, 75%B:25%R, and 100%B:0%R. A 220 µmol m-2 s-1 total photon flux density (TPFD), 18 h photoperiod, 21/17 ± 2 °C temperature and 60% ± 5% relative humidity in the growth chamber were maintained during cultivation. We observed that an increasing percentage of blue light in the LED illumination spectrum during growth was associated with reduced elongation in the microgreens of both species and had a positive effect on the accumulation of mostly macro- and micronutrients. However, different B:R light ratios indicate a species-dependent response to changes in growth parameters such as leaf area, fresh and dry mass, and optical leaf indexes such as for chlorophyll, flavonol, anthocyanin, and carotenoid reflectance.

4.
Plants (Basel) ; 10(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924644

RESUMO

The effect of multicolor pulsed light-emitting diode (LED) irradiation on lettuce "Defender" growth, photosynthetic performance and antioxidant properties was studied. The experiments were designed to compare the continuous and pulsed lighting (0.5, 1 kHz; 50% duty ratio) effects of B450, G520, R660 and FR735 lighting components, maintaining total diurnal integral light quantity (DLI 14.4 mol m-2 day-1) constant during the 16-h photoperiod. The results showed that lettuce grown under pulsed irradiation displayed superior growth performance, including a significant enhancement of fresh (~32%) and dry biomass (~36%) and leaf area (~48%). Lettuce cultivated in both pulsed light treatments was characterized by the higher photosynthetic rate, chlorophyll (a,b) and carotenoid concentration. However, the total phenol and antioxidant properties in lettuce were more dependent on the specific pulsed light frequency. Only treatment with 1 kHz frequency was effective for higher phenol content, 2,20-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical scavenging activity and Fe2+ reducing antioxidant power (FRAP). Thus, our results propose the role of pulsed LED light in improving the photosynthetic efficiency and antioxidative properties of lettuce plants cultivated indoors. In the future, pulsed lighting techniques should be included in the development of artificial lighting systems in controlled environment agriculture (CEA) to produce high-quality crops with the possibility to save electricity.

5.
Front Plant Sci ; 11: 610174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643330

RESUMO

This study aimed to evaluate the effect of dynamic red and blue light parameters on the physiological responses and key metabolites in lettuce and also the subsequent impact of varying light spectra on nutritive value. We explored the metabolic changes in carotenes, xanthophylls, soluble sugars, organic acids, and antioxidants; the response of photosynthetic indices [photosynthetic (Pr) and transpiration (Tr) rates]; and the intracellular to ambient CO2 concentration ratios (C i /C a ) in lettuce (Lactuca sativa L. "Lobjoits Green Cos"). They were cultivated under constant (con) or parabolic (dyn) blue (B, 452 nm) and/or red (R, 662 nm) light-emitting diode (LED) photosynthetic photon flux densities (PPFDs) at 12, 16, and 20 h photoperiods, maintaining consistent daily light integrals (DLIs) for each light component in all treatments, at 2.3 and 9.2 mol m-2 per day for blue and red light, respectively. The obtained results and principal component analysis (PCA) confirmed a significant impact of the light spectrum, photoperiod, and parabolic profiles of PPFD on the physiological response of lettuce. The 16 h photoperiod resulted in significantly higher content of xanthophylls (neoxanthin, violaxanthin, lutein, and zeaxanthin) in lettuce leaves under both constant and parabolic blue light treatments (BconRdyn 16 h and BdynRdyn 16 h, respectively). Lower PPFD levels under a 20 h photoperiod (BdynRdyn 20 h) as well as higher PPFD levels under a 12 h photoperiod (BdynRdyn 12 h) had a pronounced impact on leaf gas exchange indices (Pr, Tr, C i /C a ), xanthophylls, soluble sugar contents, and antioxidant properties of lettuce leaves. The parabolic PPFD lighting profile over a 16 h photoperiod (BdynRdyn 16 h) led to a significant decrease in C i /C a , which resulted in decreased Pr and Tr, compared with constant blue or red light treatments with the same photoperiod (BconRdyn and BdynRcon 16 h). Additionally, constant blue lighting produced higher α + ß-carotene and anthocyanin (ARI) content and increased carotenoid to chlorophyll ratio (CRI) but decreased biomass accumulation and antioxidant activity.

6.
J Photochem Photobiol B ; 202: 111726, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31816516

RESUMO

The objective of the study was to investigate the effects of growth-stage specific lighting for the physiological homeostasis of red leaf lettuce (Lactuca sativa L. cv. Red Cos), by measuring the productivity of photosynthesis and primary metabolism. In the experiments, the main photosynthetic photon flux consisted of red (R) and blue (B) light, supplemented with blue, green (G) or UV-A wavelengths. Decrease of fructose, accompanied by significant decrease of stomatal conductance (gs), the ratio of intracellular to ambient CO2 concentration (Ci/Ca), photosynthetic rate (Pr), light adapted actual quantum yield of PSII photochemistry (ΦPSII), biomass formation and significant increase of transpiration rate (Tr) suggest that supplemental UV-A during maturity stage, after supplemental green irradiation during seedling stage (BRG to BRUV) was the least favourable condition for red leaf lettuce. However, constant irradiation with supplemental green (BRG) or supplemental green irradiation after increased blue exposure (B↑R to BRG) resulted in significant increase of Pr, gs, Ci/Ca, and light use efficiency(LUE), and decrease of Tr and Water use efficiency (WUE). Significant increase of leaf area was observed under supplemental green in both seedlings (BR; BRG) and matured plants (B↑R to BRG). Significant increase of specific leaf area was found under supplemental green (BRG) for seedlings and under increased blue (B↑R) for matured plants. Accordingly, the most favourable growth-stage specific lighting spectrum strategy for red leaf lettuce, based on photosynthetic and primary metabolite response, is supplemental green irradiation after increased blue exposure (B↑R to BRG), whereas, the most favourable condition for seedlings is BRG. According to the PCA correlation matrix, associations among the measured data indicate that WUE negatively correlated with gs and Ci/Ca, while LUE positively correlated with gs and Pr. However, weak correlations between ФPSII, LUE and photochemical reflectance index (PRI) suggest that selected light conditions were not optimal for red leaf lettuce.


Assuntos
Lactuca/efeitos da radiação , Luz , Clorofila/química , Análise por Conglomerados , Gases/química , Gases/metabolismo , Lactuca/crescimento & desenvolvimento , Fotossíntese/efeitos da radiação , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Análise de Componente Principal , Teoria Quântica , Raios Ultravioleta
7.
Food Chem ; 310: 125799, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31711809

RESUMO

In this study we explore the effects of multi-colour LED lighting spectrum on nutritive primary metabolites in green ('Lobjoits green cos') and red ('Red cos') leaf lettuce (Lactuca sativa L.), cultivated in controlled environment. The basal lighting, consisting of blue 455 nm, red 627 and 660 nm and far red 735 nm LEDs, was supplemented with UV-A 380 nm, green 510 nm, yellow 595 nm or orange 622 nm LED wavelengths at total photosynthetic photon flux density of 300 µmol m-2 s-1. Supplemental lighting colours did not affect lettuce growth; however had distinct impact on nitrite, amino acid, organic acid, and soluble sugar contents. Orange, green and UV-A light had differential effects on red and green leaf lettuce metabolism and interplay with nutritional value and safety of lettuce production. The metabolic response was cultivar specific; however green light had reasonable impact on the contents of nutritive primary metabolites in red and green leaf lettuce.


Assuntos
Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Lactuca/química , Lactuca/fisiologia , Nitratos/metabolismo , Aminoácidos/análise , Ácidos Carboxílicos/análise , Ambiente Controlado , Iluminação , Nitratos/análise , Nitritos/metabolismo , Fotossíntese , Pigmentação , Açúcares/análise , Açúcares/metabolismo , Raios Ultravioleta
8.
Front Plant Sci ; 10: 1475, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798616

RESUMO

To increase the nutritional value and levels of essential minerals in vegetable food, microgreens are promising targets. The metabolic processes of microgreens can be managed with different cultivation techniques, which include manipulating the properties of light derived by light-emitting diodes (LEDs). In this study Brassicaceae microgreens (kohlrabi Brassica oleracea var. gongylodes, broccoli Brassica oleracea, and mizuna Brassica rapa var. Japonica) were cultivated under different light spectral quality, and the metabolic changes insoluble sugars (hexoses and sucrose), ascorbic acid, ß-carotene, and contents of non-heme iron (Fe) and its connection with magnesium (Mg) or calcium (Ca) levels were monitored. Plants grew under the primary LED light spectrum (the combination of blue light at 447 nm, red at 638 and 665 nm, and far-red at 731 nm) or supplemented with LED green light at 520 nm, yellow at 595 nm, or orange at 622 nm. The photoperiod was 16 h, and a total PPFD of 300 µmol m-2 s-1 was maintained. Under supplemental yellow light at 595 nm, the content of soluble carbohydrates increased significantly in mizuna and broccoli. Under all supplemental light components, ß-carotene accumulated in mizuna, and ascorbic acid accumulated significantly in kohlrabi. Under supplemental orange light at 622 nm, Fe, Mg, and Ca contents increased significantly in all microgreens. The accumulation of Fe was highly dependent on promoters and inhibitors of Fe absorption, as demonstrated by the very strong positive correlations between Fe and Ca and between Fe and Mg in kohlrabi and broccoli, and the strong negative correlations between Fe and ß-carotene and between Fe and soluble carbohydrates in kohlrabi. Thus, the metabolic changes that occurred in treated microgreens led to increases in the contents of essential nutrients. Therefore, selected supplemental LED wavelengths can be used in the cultivation of Brassicaceae microgreens to preserve and increase the contents of specific nutritionally valuable metabolites.

9.
Front Plant Sci ; 10: 1153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681343

RESUMO

Ultraviolet A (UV-A) light-emitting diodes (LEDs) could serve as an effective tool for improving the content of health-promoting bioactive compounds in plants in controlled-environment agriculture (CEA) systems. The goal of this study was to investigate the effects of UV-A LEDs at different wavelengths (366, 390, and 402 nm) and durations (10 and 16 h) on the growth and phytochemical contents of mustard microgreens (Brassica juncea L. cv. "Red Lion"), when used as supplemental light to the main LED lighting system (with peak wavelengths of 447, 638, 665, and 731 nm). Plants were grown for 10 days under a total photon flux density (TPFD) of 300 µmol m-2 s-1 and 16-h light/8-h dark period. Different UV-A wavelengths and irradiance durations had varied effects on mustard microgreens. Supplemental UV-A radiation did not affect biomass accumulation; however, the longest UV-A wavelength (402 nm) increased the leaf area of mustard microgreens, regardless of the duration of irradiance. The concentration of the total phenolic content and α-tocopherol mostly increased under 402-nm UV-A, while that of nitrates increased under 366- and 390-nm UV-A at both radiance durations. The contents of lutein/zeaxanthin and ß-carotene increased in response to the shortest UV-A wavelength (366 nm) at 10-h irradiance as well as longer UV-A wavelength (390 nm) at 16 h irradiance. The most positive effect on the accumulation of mineral elements, except iron, was observed under longer UV-A wavelengths at 16-h irradiance. Overall, these results suggest that properly composed UV-A LED parameters in LED lighting systems could improve the nutritional quality of mustard microgreens, without causing any adverse effects on plant growth.

10.
J Sci Food Agric ; 99(14): 6608-6619, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31347167

RESUMO

BACKGROUND: Understanding plant responses to light quantity in indoor horticultural systems is important for optimising lettuce growth and metabolism as well as energy utilisation efficiency. Light intensity and photoperiod sufficient for normal plant growth parameters might be not efficient for nitrate assimilation. Therefore, this study explored and compared the effects of different light intensities (100-500 µmol m-2 s-1 ) and photoperiods (12-24 h) on the growth and nitrate assimilation in red and green leaf lettuce (Lactuca sativa L.). RESULTS: For efficient nitrate assimilation, 300-400 µmol m-2 s-1 photosynthetic photon flux density (PPFD) and 16-18 h photoperiod is necessary for red and green lettuces. The insufficient light quantity resulted in reduced growth and remarkable increase in nitrate and nitrite contents in both cultivars. Short photoperiods, similarly to low PPFD, growth parameters, chlorophyll indices and nitrate assimilation indices showed the shortage of photosynthetic products for normal plant physiological processes. Short photoperiods had the least pronounced effect on nitrate and nitrite contents in lettuce leaves. CONCLUSION: Light intensity was superior compared to photoperiods for efficient nitrate assimilation in both lettuce cultivars. Under short photoperiods, similarly to low intensity, growth parameters, chlorophyll index and nitrate assimilation indices showed a shortage of photosynthetic products for normal physiological processes. The free amino acid concentration increased, but it was not efficiently incorporated in proteins, as their level in lettuce was lower compared to those for moderate photoperiods. © 2019 Society of Chemical Industry.


Assuntos
Lactuca/metabolismo , Lactuca/efeitos da radiação , Nitratos/metabolismo , Clorofila/análise , Clorofila/metabolismo , Cor , Lactuca/química , Lactuca/crescimento & desenvolvimento , Luz , Nitratos/análise , Nitritos/análise , Nitritos/metabolismo , Fotoperíodo , Fotossíntese , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
11.
Food Chem ; 173: 600-6, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25466065

RESUMO

The objective of this study was to evaluate the effects of irradiance levels and spectra produced by solid-state light-emitting diodes (LEDs) on carotenoid content and composition changes in Brassicaceae microgreens. A system of five high-power, solid-state lighting modules with standard 447-, 638-, 665-, and 731-nm LEDs was used in the experiments. Two experiments were performed: (1) evaluation of LED irradiance levels of 545, 440, 330, 220, and 110 µmol m(-2) s(-1) photosynthetically active flux density (PPFD) and (2) evaluation of the effects of 520-, 595-, and 622-nm LEDs supplemental to the standard set of LEDs. Concentrations of various carotenoids in red pak choi and tatsoi were higher under illumination of 330-440 µmol m(-2) s(-1) and at 110-220 µmol m(-2) s(-1) in mustard. All supplemental wavelengths increased total carotenoid content in mustard but decreased it in red pak choi. Carotenoid content increased in tatsoi under supplemental yellow light.


Assuntos
Brassicaceae/química , Brassicaceae/efeitos da radiação , Carotenoides/análise , Luz , Iluminação , Luteína/análise , Fotossíntese , Folhas de Planta/química , Xantofilas/análise , beta Caroteno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...