Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 50(6): 1416-1424, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34392334

RESUMO

The potato psyllid, Bactericera cockerelli (Sulc), is a major pest of potato (Solanales: Solanaceae) as a vector of 'Candidatus Liberibacter solanacearum' (Lso). Bactericera cockerelli colonizes potato from noncrop host plants, yet we do not yet know which noncrop species are the primary sources of Lso-infected psyllids. The perennial weed, Physalis longifolia Nutt., is a high-quality host for B. cockerelli and Lso under laboratory conditions but has been overlooked in recent field studies as a source of Lso-infected psyllids. Our current study had four objectives: 1) determine whether P. longifolia is abundant in potato-growing regions of Washington and Idaho, 2) determine whether stands of P. longifolia harbor B. cockerelli and Lso, 3) identify the psyllid haplotypes occurring on P. longifolia, and 4) use molecular gut content analysis to infer which plant species the psyllids had previously fed upon prior to their capture from P. longifolia. Online herbaria and field searches revealed that P. longifolia is abundant in western Idaho and is present at low densities in the Columbia Basin of Washington. Over 200 psyllids were collected from P. longifolia stands in 2018 and 2019, confirming that B. cockerelli colonizes stands of this plant. Gut content analysis indicated that a proportion of B. cockerelli collected from P. longifolia had arrived there from potato. Confirmation that P. longifolia is abundant in certain potato-growing regions of the Pacific Northwest, and that B. cockerelli readily uses this plant, could improve models to predict the risk of future psyllid and Lso outbreaks.


Assuntos
Hemípteros , Physalis , Solanum tuberosum , Animais , Idaho , Doenças das Plantas , Plantas Daninhas , Solanales , Washington
2.
PLoS One ; 8(9): e76152, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086703

RESUMO

Food web ecologists have long sought to characterize the trophic niches of animals using stable isotopic analysis. However, distilling trophic position from isotopic composition has been difficult, largely because of the variability associated with trophic discrimination factors (inter-trophic isotopic fractionation and routing). We circumvented much of this variability using compound-specific isotopic analysis (CSIA). We examined the (15)N signatures of amino acids extracted from organisms reared in pure culture at four discrete trophic levels, across two model communities. We calculated the degree of enrichment at each trophic level and found there was a consistent trophic discrimination factor (~7.6‰). The constancy of the CSIA-derived discrimination factor permitted unprecedented accuracy in the measurement of animal trophic position. Conversely, trophic position estimates generated via bulk-(15)N analysis significantly underestimated trophic position, particularly among higher-order consumers. We then examined the trophic hierarchy of a free-roaming arthropod community, revealing the highest trophic position (5.07) and longest food chain ever reported using CSIA. High accuracy in trophic position estimation brings trophic function into sharper focus, providing greater resolution to the analysis of food webs.


Assuntos
Aminoácidos/química , Artrópodes/química , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Aminoácidos/isolamento & purificação , Análise de Variância , Animais , Avena/química , Cromatografia Gasosa-Espectrometria de Massas , Larva/química , Phaseolus/química , Especificidade da Espécie , Vaccinium macrocarpon/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...