Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(13): 3833-3850, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37025006

RESUMO

Microalgae hold enormous potential to provide a safe and sustainable source of high-value compounds, acting as carbon-fixing biofactories that could help to mitigate rapidly progressing climate change. Bioengineering microalgal strains will be key to optimizing and modifying their metabolic outputs, and to render them competitive with established industrial biotechnology hosts, such as bacteria or yeast. To achieve this, precise and tuneable control over transgene expression will be essential, which would require the development and rational design of synthetic promoters as a key strategy. Among green microalgae, Chlamydomonas reinhardtii represents the reference species for bioengineering and synthetic biology; however, the repertoire of functional synthetic promoters for this species, and for microalgae generally, is limited in comparison to other commercial chassis, emphasizing the need to expand the current microalgal gene expression toolbox. Here, we discuss state-of-the-art promoter analyses, and highlight areas of research required to advance synthetic promoter development in C. reinhardtii. In particular, we exemplify high-throughput studies performed in other model systems that could be applicable to microalgae, and propose novel approaches to interrogating algal promoters. We lastly outline the major limitations hindering microalgal promoter development, while providing novel suggestions and perspectives for how to overcome them.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Microalgas/genética , Microalgas/metabolismo , Biotecnologia , Regiões Promotoras Genéticas/genética , Biologia Sintética
2.
Metab Eng ; 75: 143-152, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549411

RESUMO

Flavonoids are a group of secondary metabolites from plants that have received attention as high value-added pharmacological substances. Recently, a robust and efficient bioprocess using recombinant microbes has emerged as a promising approach to supply flavonoids. In the flavonoid biosynthetic pathway, the rate of chalcone synthesis, the first committed step, is a major bottleneck. However, chalcone synthase (CHS) engineering was difficult because of high-level conservation and the absence of effective screening tools, which are limited to overexpression or homolog-based combinatorial strategies. Furthermore, it is necessary to precisely regulate the metabolic flux for the optimum availability of malonyl-CoA, a substrate of chalcone synthesis. In this study, we engineered CHS and optimized malonyl-CoA availability to establish a platform strain for naringenin production, a key molecular scaffold for various flavonoids. First, we engineered CHS through synthetic riboswitch-based high-throughput screening of rationally designed mutant libraries. Consequently, the catalytic efficiency (kcat/Km) of the optimized CHS enzyme was 62% higher than that of the wild-type enzyme. In addition to CHS engineering, we designed genetic circuits using transcriptional repressors to fine-tune the malonyl-CoA availability. The best mutant with synergistic effects of the engineered CHS and the optimized genetic circuit produced 98.71 mg/L naringenin (12.57 mg naringenin/g glycerol), which is the highest naringenin concentration and yield from glycerol in similar culture conditions reported to date, a 2.5-fold increase compared to the parental strain. Overall, this study provides an effective strategy for efficient production of flavonoids.


Assuntos
Chalconas , Flavanonas , Riboswitch , Flavonoides/genética , Glicerol , Flavanonas/genética , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Engenharia Metabólica
3.
Nat Commun ; 13(1): 5353, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097012

RESUMO

Physical compartmentalization of metabolism using membranous organelles in eukaryotes is helpful for chemical biosynthesis to ensure the availability of substrates from competitive metabolic reactions. Bacterial hosts lack such a membranous system, which is one of the major limitations for efficient metabolic engineering. Here, we employ kinetic compartmentalization with the introduction of an unnatural enzymatic reaction by an engineered enzyme as an alternative strategy to enable substrate availability from competitive reactions through kinetic isolation of metabolic pathways. As a proof of concept, we kinetically isolate the itaconate synthetic pathway from the tricarboxylic acid cycle in Escherichia coli, which is natively separated by mitochondrial membranes in Aspergillus terreus. Specifically, 2-methylcitrate dehydratase is engineered to alternatively catalyze citrate and kinetically secure cis-aconitate for efficient production using a high-throughput screening system. Itaconate production can be significantly improved with kinetic compartmentalization and its strategy has the potential to be widely applicable.


Assuntos
Engenharia Metabólica , Succinatos , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Succinatos/metabolismo
4.
Free Radic Biol Med ; 192: 224-234, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174879

RESUMO

Among natural products, ovothiol (ovo), produced by marine invertebrates, bacteria, and microalgae, is receiving increasing interest for its unique antioxidant properties. Recently, ovo has been shown to exhibit anti-inflammatory activity in an in vitro model of endothelial dysfunction and in an in vivo model of liver fibrosis. The aim of this study was to evaluate the effect of ovo and its precursor 5-thiohistidine (5-thio) in comparison with ergothioneine (erg), in human skin cells and tissues upon inflammation. We used both an in vitro and ex vivo model of human skin, represented by a keratinocytes cell line (HaCaT) and skin biopsies, respectively. We observed that ovo, 5-thio, and erg were not cytotoxic in HaCaT cells, but instead exerted a protective function against TNF-α -induced inflammation. In order to get insights on their mechanism of action, we performed western blot analysis of ERK and JNK, as well as sub-cellular localization of Nrf2, a key mediator of the anti-inflammatory response. The results indicated that the pre-treatment with ovo, 5-thio, and erg differently affected the phosphorylation of ERK and JNK. However, all the three molecules promoted the accumulation of Nrf2 in the nucleus of HaCaT cells. In addition, gene expression analysis by RTqPCR and ELISA assays performed in ex vivo human skin tissues pre-treated with thiohistidines and then inflamed with IL-1ß revealed a significant downregulation of IL-8, TNF-α and COX-2 genes and a concomitant significant decrease in the cytokines IL-6, IL-8 and TNF-α production. Moreover, the protective action of ovo and 5-thio resulted to be stronger when compared with dexamethasone, a corticosteroid drug currently used to treat skin inflammatory conditions. Our findings suggest that ovo and 5-thio can ameliorate skin damage and may be used to develop natural skin care products to prevent the inflammatory status induced by environmental stressors and aging.


Assuntos
Produtos Biológicos , Ergotioneína , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Produtos Biológicos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dexametasona/metabolismo , Ergotioneína/metabolismo , Ergotioneína/farmacologia , Histidina/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Enxofre/metabolismo , Compostos de Enxofre/efeitos adversos , Compostos de Enxofre/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Open Biol ; 12(1): 210262, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042403

RESUMO

Ovothiols are π-methyl-5-thiohistidines produced in great amounts in sea urchin eggs, where they can act as protective agents against the oxidative burst at fertilization and environmental stressors during development. Here we examined the biological relevance of ovothiol during the embryogenesis of the sea urchin Paracentrotus lividus by assessing the localization of the key biosynthetic enzyme OvoA, both at transcript and protein level, and perturbing its protein translation by morpholino antisense oligonucleotide-mediated knockdown experiments. In addition, we explored the possible involvement of ovothiol in the inflammatory response by assessing ovoA gene expression and protein localization following exposure to bacterial lipopolysaccharide. The results of the present study suggest that ovothiol may be a key regulator of cell proliferation in early developing embryos. Moreover, the localization of OvoA in key larval cells and tissues, in control and inflammatory conditions, suggests that ovothiol may ensure larval skeleton formation and mediate inflammatory processes triggered by bacterial infection. This work significantly contributes to the understanding of the biological function of ovothiols in marine organisms, and may provide new inspiration for the identification of the biological activities of ovothiols in humans, considering the pharmacological potential of these molecules.


Assuntos
Paracentrotus , Animais , Embrião não Mamífero , Humanos , Larva , Metilistidinas/metabolismo , Paracentrotus/metabolismo
6.
Mar Drugs ; 19(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209059

RESUMO

In the last few decades, the thinning of the ozone layer due to increased atmospheric pollution has exacerbated the negative effects of excessive exposure to solar ultraviolet radiation (UVR), and skin cancer has become a major public health concern. In order to prevent skin damage, public health advice mainly focuses on the use of sunscreens, along with wearing protective clothing and avoiding sun exposure during peak hours. Sunscreens present on the market are topical formulations that contain a number of different synthetic, organic, and inorganic UVR filters with different absorbance profiles, which, when combined, provide broad UVR spectrum protection. However, increased evidence suggests that some of these compounds cause subtle damage to marine ecosystems. One alternative may be the use of natural products that are produced in a wide range of marine species and are mainly thought to act as a defense against UVR-mediated damage. However, their potential for human photoprotection is largely under-investigated. In this review, attention has been placed on the molecular strategies adopted by marine organisms to counteract UVR-induced negative effects and we provide a broad portrayal of the recent literature concerning marine-derived natural products having potential as natural sunscreens/photoprotectants for human skin. Their chemical structure, UVR absorption properties, and their pleiotropic role as bioactive molecules are discussed. Most studies strongly suggest that these natural products could be promising for use in biocompatible sunscreens and may represent an alternative eco-friendly approach to protect humans against UV-induced skin damage.


Assuntos
Organismos Aquáticos , Neoplasias Cutâneas/prevenção & controle , Protetores Solares/uso terapêutico , Animais , Produtos Biológicos , Humanos , Protetores Solares/química
7.
Mar Drugs ; 18(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962291

RESUMO

Diatoms are one of the most widespread groups of microalgae on Earth. They possess extraordinary metabolic capabilities, including a great ability to adapt to different light conditions. Recently, we have discovered that the diatom Skeletonema marinoi produces the natural antioxidant ovothiol B, until then identified only in clams. In this study, we investigated the light-dependent modulation of ovothiol biosynthesis in S. marinoi. Diatoms were exposed to different light conditions, ranging from prolonged darkness to low or high light, also differing in the velocity of intensity increase (sinusoidal versus square-wave distribution). The expression of the gene encoding the key ovothiol biosynthetic enzyme, ovoA, was upregulated by high sinusoidal light mimicking natural conditions. Under this situation higher levels of reactive oxygen species and nitric oxide as well as ovothiol and glutathione increase were detected. No ovoA modulation was observed under prolonged darkness nor low sinusoidal light. Unnatural conditions such as continuous square-wave light induced a very high oxidative stress leading to a drop in cell growth, without enhancing ovoA gene expression. Only one of the inducible forms of nitric oxide synthase, nos2, was upregulated by light with consequent production of NO under sinusoidal light and darkness conditions. Our data suggest that ovothiol biosynthesis is triggered by a combined light stress caused by natural distribution and increased photon flux density, with no influence from the daily light dose. These results open new perspectives for the biotechnological production of ovothiols, which are receiving a great interest for their biological activities in human model systems.


Assuntos
Antioxidantes/isolamento & purificação , Diatomáceas/metabolismo , Luz , Metilistidinas/isolamento & purificação , Escuridão , Glutationa/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
8.
Mar Environ Res ; 160: 104978, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32291250

RESUMO

Marine pollution due to disused industrial activities is a major threat to ecosystems and human health, for example through the effects of re-suspension of toxic substances that are present in contaminated sediments. Here, we examined the effects of different re-suspension patterns of polluted sediments from the site of national interest Bagnoli-Coroglio, on the immune system of the sea urchin Paracentrotus lividus. An indoor experiment was set up exposing sea urchins for 34 days to such sediments and evaluating the effects of two patterns of water turbulence, mimicking natural storms at sea. One group of animals experienced an "aggregated" pattern of turbulence, consisting in two events, each lasting 2 days, separated by only 3 calm days, while a second group experienced two events of turbulence separated by 17 calm days (spaced pattern). At different times from the beginning of the experiment, coelomic fluid was collected from the animals and immune cells were examined for cell count and morphology, oxidative stress variables, and expression of genes involved in metal detoxification, stress response and inflammation. Our results highlighted that the aggregated pattern of turbulence was more noxious for sea urchins. Indeed, their immune system was altered, over the exposure time, as indicated by the increase of red amoebocytes number. Moreover, despite of an increase of the antioxidant power, animals from this group displayed a very significant ROS over-production at the end of the experiment. Conversely, animals in the spaced condition activated a different immune response, mainly having phagocytes as actors, and were able to partially recover from the received stress at the end of the experiment. No changes in the expression of genes related to antioxidant and anti-inflammatory responses were observed in both groups. By contrast, a down-regulation of various metallothioneins (4, 6, 7 and 8) in the group subjected to aggregated pattern was observed, while metallothionein 8 was up-regulated in the animals from the group exposed to the spaced pattern of turbulence. This work provides the first evidence of how sea urchins can respond to different re-suspension patterns of polluted sediments by modulating their immune system functions. The present data are relevant in relation to the possible environmental restoration of the study site, whose priorities include the assessment of the effects of marine pollution on local organisms, among which P. lividus represents a key benthic species.


Assuntos
Antioxidantes , Paracentrotus , Poluentes da Água , Animais , Antioxidantes/fisiologia , Ecossistema , Sedimentos Geológicos , Humanos , Paracentrotus/imunologia , Poluentes da Água/toxicidade
9.
Free Radic Biol Med ; 152: 680-688, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31935446

RESUMO

Ovothiols are histidine-derived thiols that are receiving a great interest for their biological activities in human model systems. Thanks to the position of the thiol group on the imidazole ring of histidine, these compounds exhibit unusual antioxidant properties. They have been revealing a very promising pharmacological potential due to their anti-proliferative and anti-inflammatory properties, as well as anti-fibrotic activities not always related to their antioxidant power. Ovothiols occur in three differentially methylated forms (A, B and C), isolated from ovary, eggs and biological fluids of many marine invertebrates, mollusks, microalgae, and pathogenic protozoa. These molecules are synthesized by two enzymes: the sulfoxide synthase OvoA and the sulfoxide lyase OvoB. OvoA catalyzes the insertion of the sulfur atom of cysteine on the imidazole ring of histidine, leading to the formation of a sulfoxide intermediate. This is then cleaved by OvoB, giving 5-thiohistidine, finally methylated on the imidazole ring thanks to the methyltransferase domain of OvoA. Recent studies have shown that OvoA homologs are encoded in a wide variety of genomes suggesting that ovothiol biosynthesis is much more widespread in nature than initially thought. Here we have investigated the OvoA occurrence in diatoms, one of the most abundant group of microalgae, dominating marine and freshwater environments. They are considered a very good model system for both biology/photophysiology studies and for biotechnological applications. We have performed comparative sequence and phylogenetic analyses of OvoA from diatoms, highlighting a high degree of conservation of the canonical domain architecture in the analyzed species, as well as a clear clustering of OvoA in the two different morphological groups, i.e. centric and pennate diatoms. The in silico analyses have also revealed that OvoA gene expression is modulated by growth conditions. More importantly, we have characterized the thiol fraction from cultures of the coastal centric diatom Skeletonema marinoi, providing the first evidence of ovothiol B biosynthesis in diatoms.


Assuntos
Diatomáceas , Cisteína , Diatomáceas/genética , Humanos , Metilistidinas , Filogenia
10.
Mar Drugs ; 17(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757046

RESUMO

Gamma-glutamyl transpeptidase (GGT) is a cell surface enzyme involved in glutathione metabolism and maintenance of redox homeostasis. High expression of GGT on tumor cells is associated with an increase of cell proliferation and resistance against chemotherapy. GGT inhibitors that have been evaluated in clinical trials are too toxic for human use. We have previously identified ovothiols, 5(Nπ)-methyl-thiohistidines of marine origin, as non-competitive-like inhibitors of GGT that are more potent than the known GGT inhibitor, 6-diazo-5-oxo-l-norleucine (DON), and are not toxic for human embryonic cells. We extended these studies to the desmethylated form of ovothiol, 5-thiohistidine, and confirmed that this ovothiol derivative also acts as a non-competitive-like GGT inhibitor, with a potency comparable to ovothiol. We also found that both 5-thiohistidine derivatives act as reversible GGT inhibitors compared to the irreversible DON. Finally, we probed the interactions of 5-thiohistidines with GGT by docking analysis and compared them with the 2-thiohistidine ergothioneine, the physiological substrate glutathione, and the DON inhibitor. Overall, our results provide new insight for further development of 5-thiohistidine derivatives as therapeutics for GGT-positive tumors.


Assuntos
Organismos Aquáticos/química , Histidina/farmacologia , Compostos de Enxofre/farmacologia , gama-Glutamiltransferase/antagonistas & inibidores , Compostos Azo/farmacologia , Proliferação de Células/efeitos dos fármacos , Desenvolvimento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios Enzimáticos , Glutationa/metabolismo , Células HEK293 , Histidina/química , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Norleucina/análogos & derivados , Norleucina/farmacologia , Especificidade por Substrato , Compostos de Enxofre/química , Testes de Toxicidade , gama-Glutamiltransferase/metabolismo
11.
Cells ; 8(11)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671675

RESUMO

Liver fibrosis is a pathophysiologic process involving the accumulation of extracellular matrix proteins as collagen deposition. Advanced liver fibrosis can evolve in cirrhosis, portal hypertension and often requires liver transplantation. At the cellular level, hepatic fibrosis involves the activation of hepatic stellate cells and their transdifferentiation into myofibroblasts. Numerous pro-fibrogenic mediators including the transforming growth factor-ß1, the platelet-derived growth factor, endothelin-1, toll-like receptor 4, and reactive oxygen species are key players in this process. Knowledge of the cellular and molecular mechanisms underlying hepatic fibrosis development need to be extended to find novel therapeutic strategies. Antifibrotic therapies aim to inhibit the accumulation of fibrogenic cells and/or prevent the deposition of extracellular matrix proteins. Natural products from terrestrial and marine sources, including sulfur-containing compounds, exhibit promising activities for the treatment of fibrotic pathology. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans are largely unknown. This review aims to provide a reference collection on experimentally tested natural anti-fibrotic compounds, with particular attention on sulfur-containing molecules. Their chemical structure, sources, mode of action, molecular targets, and pharmacological activity in the treatment of liver disease will be discussed.


Assuntos
Produtos Biológicos/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Compostos de Enxofre/uso terapêutico , Animais , Humanos
12.
Oncotarget ; 8(26): 42571-42587, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28489572

RESUMO

Despite the encouraging results of the innovative therapeutic treatments, complete remission is uncommon in patients affected by chronic lymphocytic leukaemia, which remains an essentially incurable disease. Recently, clinical trials based on BH3-mimetic drugs showed positive outcomes in subjects with poor prognostic features. However, resistance to treatments occurs in a significant number of patients. We previously reported that the multi-kinase inhibitor quercetin, a natural flavonol, restores sensitivity to ABT-737, a BH3-mimetic compound, in both leukemic cell lines and B-cells isolated from patients. To identify the molecular target of quercetin, we employed a new cell line, HG3, obtained by immortalization of B-cells from a chronic lymphocytic leukaemia patient at the later stage of disease. We confirmed that quercetin in association with ABT-737 synergistically enhances apoptosis in HG3 (combination index < 1 for all fractions affected). We also reported that the cellular uptake of quercetin is extremely rapid, with an intracellular concentration of about 38.5 ng/106 cells, after treatment with 25 µM for 5 min. We demonstrated that the activity of protein kinase CK2, which positively triggers PI3K/Akt pathway by inactivating PTEN phosphatase, is inhibited by quercetin immediately after its addition to HG3 cells (0-2 min). PI3K activity was also inhibited by quercetin within 60 min from the treatment. The combined inhibition of CK2 and PI3K kinase activities by quercetin restored ABT-737 sensitivity and increased lethality in human leukemia cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Caseína Quinase II/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Quercetina/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Nitrofenóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
13.
Curr Top Med Chem ; 16(17): 1943-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845551

RESUMO

Neurodegenerative diseases cause a progressive functional alteration of neuronal systems, resulting in a state of dementia which is considered one of the most common psychiatric disorders of the elderly. Dementia implies an irreversible impairment of intellect that increases with age causing alteration of memory, language and behavioral problems. The most common form, which occurs in more than half of all cases, is Alzheimer's disease, characterized by accumulation of amyloid plaques and neurofibrillary tangles. Neuroinflammation and oxidative stresses have been considered as a hallmark of Alzheimer disease, playing a crucial role in neurotoxicity. For this reason, an adequate antioxidant strategy may improve the treatment of neurodegenerative diseases and dementia. Several studies support the neuroprotective abilities of polyphenolic compounds resulting in neuronal protection against injury induced by neurotoxins, ability to suppress neuroinflammation and the potential to promote memory, learning and cognitive functions. We critically reviewed here the therapeutic potential of pure herbal compounds (e.g., green tea polyphenol (-)- epigallocatechin-3-gallate, resveratrol, curcumin, quercetin and others) and extracts enriched in polyphenols showing the most promising neuroprotective effects. We are also presenting data on the ability of an extract derived from elderberry, Sambucus nigra, possessing elevated polyphenolic content and antioxidant capacity to protect neuronal cells against oxidizing agents.


Assuntos
Produtos Biológicos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Polifenóis/uso terapêutico , Animais , Produtos Biológicos/química , Humanos , Fármacos Neuroprotetores/química , Polifenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...