Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(7): 077101, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867824

RESUMO

We study the diffusion of particles confined close to a single wall and in double-wall planar channel geometries where the local diffusivities depend on the distance to the boundaries. Displacement parallel to the walls is Brownian as characterized by its variance, but it is non-Gaussian having a nonzero fourth cumulant. Establishing a link with Taylor dispersion, we calculate the fourth cumulant and the tails of the displacement distribution for general diffusivity tensors along with potentials generated by either the walls or externally, for instance, gravity. Experimental and numerical studies of the motion of a colloid in the direction parallel to the wall give measured fourth cumulants which are correctly predicted by our theory. Interestingly, contrary to models of Brownian-yet-non-Gaussian diffusion, the tails of the displacement distribution are shown to be Gaussian rather than exponential. All together, our results provide additional tests and constraints for the inference of force maps and local transport properties near surfaces.

2.
Eur Phys J E Soft Matter ; 46(4): 24, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002415

RESUMO

Brownian motion is a central scientific paradigm. Recently, due to increasing efforts and interests towards miniaturization and small-scale physics or biology, the effects of confinement on such a motion have become a key topic of investigation. Essentially, when confined near a wall, a particle moves much slower than in the bulk due to friction at the boundaries. The mobility is therefore locally hindered and space-dependent, which in turn leads to the apparition of so-called multiplicative noises, and associated non-Gaussianities which remain difficult to resolve at all times. Here, we exploit simple, optimized and efficient numerical simulations to address Brownian motion in confinement in a broadrange and quantitative way. To do so, we integrate the overdamped Langevin equation governing the thermal dynamics of a negatively-buoyant single spherical colloid within a viscous fluid confined by two rigid walls, including surface charges. From the produced large set of long random trajectories, we perform a complete statistical analysis and extract all the key quantities, such as the probability distributions in displacements and their main moments. In particular, we propose a novel method to compute high-order cumulants by reducing convergence problems, and employ it to efficiently characterize the inherent non-Gaussianity of the confined process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...