Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 465, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172239

RESUMO

Attaining high crop yields and increasing carbon storage in agricultural soils, while avoiding negative environmental impacts on water quality, soil erosion, and biodiversity, requires accurate and precise management of crop inputs and management practices. The long-term analysis of spatial and temporal patterns of crop yields provides insights on how yields vary in a field, with parts of field constantly producing either high yields or low yields and other parts that fluctuate from one year to the next. The concept of yield stability has shown to be informative on how plants translate the effects of environmental conditions (e.g., soil, climate, topography) across the field and over the years in the final yield, and as a valuable layer in developing prescription maps of variable fertilizer rate inputs. Using known relationships between soil health and crop yields, we hypothesize that areas with measured constantly low yield will return low carbon to the soil affecting its heath. On this premises, yield stability zones (YSZ) provide an effective and practical integrative measure of the small-scale variability of soil health on a field relative basis. We tested this hypothesis by measuring various metrics of soil health from commercial farmers' fields in the north central Midwest of the USA in samples replicated across YSZ, using a soil test suite commonly used by producers and stakeholders active in agricultural carbon credits markets. We found that the use of YSZ allowed us to successfully partition field-relative soil organic carbon (SOC) and soil health metrics into statistically distinct regions. Low and stable (LS) yield zones were statistically lower in normalized SOC when compared to high and stable (HS) and unstable (US) yield zones. The drivers of the yield differences within a field are a series of factors ranging from climate, topography and soil. LS zones occur in areas of compacted soil layers or shallow soils (edge of the field) on steeper slopes. The US zones occurring with high water flow accumulation, were more dependent on topography and rainfall. The differences in the components of the overall soil health score (SHS) between these YSZ increased with sample depth suggesting a deeper topsoil in the US and HS zones, driven by the accumulation of water, nutrients, and carbon downslope. Comparison of the field management provided initial evidence that zero tillage reduces the magnitude of the variance in SOC and soil health metrics between the YSZ.

2.
Sci Rep ; 13(1): 2242, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755054

RESUMO

Agricultural soils can act as a sink for large quantities of soil organic carbon (SOC) but can also be sources of carbon to the atmosphere. The international standard for assessing SOC stock and measuring stock change stipulates fixed depth sampling to at least 30 cm. The tendency of bulk density (BD) to decrease with decreasing disturbance and increasing SOC concentration and the assumption of constant SOC and BD within this depth profile promotes error in the estimates of SOC stock. A hypothetical but realistic change in BD from 1.5 to 1.1 g cm-3 from successive fixed depth sampling to 30 cm underestimates SOC stock change by 17%. Significant effort has been made to evaluate and reduce this fixed depth error by using the equivalent soil mass (ESM) approach, but with limited adoption. We evaluate the error in SOC stock assessment and change generated from fixed depth measurements over time relative to the ESM approach and propose a correction that can be readily adopted under current sampling and analytical methods. Our approach provides a more accurate estimate of SOC stock accumulation or loss that will help incentivize management practice changes that reduce the environmental impacts of agriculture and further legitimize the accounting practices used by the emerging carbon market and organizations that have pledged to reduce their supply chain greenhouse gas (GHG) footprints.

3.
Glob Chang Biol ; 24(12): 5948-5960, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295393

RESUMO

Groundwater irrigation of cropland is expanding worldwide with poorly known implications for climate change. This study compares experimental measurements of the net global warming impact of a rainfed versus a groundwater-irrigated corn (maize)-soybean-wheat, no-till cropping system in the Midwest US, the region that produces the majority of U.S. corn and soybean. Irrigation significantly increased soil organic carbon (C) storage in the upper 25 cm, but not by enough to make up for the CO2 -equivalent (CO2 e) costs of fossil fuel power, soil emissions of nitrous oxide (N2 O), and degassing of supersaturated CO2 and N2 O from the groundwater. A rainfed reference system had a net mitigating effect of -13.9 (±31) g CO2 e m-2  year-1 , but with irrigation at an average rate for the region, the irrigated system contributed to global warming with net greenhouse gas (GHG) emissions of 27.1 (±32) g CO2 e m-2  year-1 . Compared to the rainfed system, the irrigated system had 45% more GHG emissions and 7% more C sequestration. The irrigation-associated increase in soil N2 O and fossil fuel emissions contributed 18% and 9%, respectively, to the system's total emissions in an average irrigation year. Groundwater degassing of CO2 and N2 O are missing components of previous assessments of the GHG cost of groundwater irrigation; together they were 4% of the irrigated system's total emissions. The irrigated system's net impact normalized by crop yield (GHG intensity) was +0.04 (±0.006) kg CO2 e kg-1 yield, close to that of the rainfed system, which was -0.03 (±0.002) kg CO2 e kg-1 yield. Thus, the increased crop yield resulting from irrigation can ameliorate overall GHG emissions if intensification by irrigation prevents land conversion emissions elsewhere, although the expansion of irrigation risks depletion of local water resources.


Assuntos
Agricultura , Aquecimento Global , Gases de Efeito Estufa , Água Subterrânea , Irrigação Agrícola , Agricultura/métodos , Dióxido de Carbono/análise , Produtos Agrícolas , Meio-Oeste dos Estados Unidos , Óxido Nitroso/análise , Solo , Triticum , Zea mays
4.
Glob Chang Biol ; 22(11): 3594-3607, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510313

RESUMO

Differences in soil nitrous oxide (N2 O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N2 O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn-soybean-wheat rotations) managed with conventional, no-till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N2 O emissions were higher from annual grain and N-fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full-rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N2 O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no-till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30-80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop × management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N2 O-N ha-1  yr-1 and were best predicted by IPCC Tier 1 and ΔEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil NO3- pools (r2  = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N2 O emissions were poorly predicted by any measured variables. Overall, long-term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.


Assuntos
Ecossistema , Óxido Nitroso , Agricultura , Produtos Agrícolas , Michigan , Solo
5.
Proc Natl Acad Sci U S A ; 111(25): 9199-204, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927583

RESUMO

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) that also depletes stratospheric ozone. Nitrogen (N) fertilizer rate is the best single predictor of N2O emissions from agricultural soils, which are responsible for ∼ 50% of the total global anthropogenic flux, but it is a relatively imprecise estimator. Accumulating evidence suggests that the emission response to increasing N input is exponential rather than linear, as assumed by Intergovernmental Panel on Climate Change methodologies. We performed a metaanalysis to test the generalizability of this pattern. From 78 published studies (233 site-years) with at least three N-input levels, we calculated N2O emission factors (EFs) for each nonzero input level as a percentage of N input converted to N2O emissions. We found that the N2O response to N inputs grew significantly faster than linear for synthetic fertilizers and for most crop types. N-fixing crops had a higher rate of change in EF (ΔEF) than others. A higher ΔEF was also evident in soils with carbon >1.5% and soils with pH <7, and where fertilizer was applied only once annually. Our results suggest a general trend of exponentially increasing N2O emissions as N inputs increase to exceed crop needs. Use of this knowledge in GHG inventories should improve assessments of fertilizer-derived N2O emissions, help address disparities in the global N2O budget, and refine the accuracy of N2O mitigation protocols. In low-input systems typical of sub-Saharan Africa, for example, modest N additions will have little impact on estimated N2O emissions, whereas equivalent additions (or reductions) in excessively fertilized systems will have a disproportionately major impact.


Assuntos
Atmosfera , Produtos Agrícolas , Efeito Estufa , Fixação de Nitrogênio , Nitrogênio , Óxido Nitroso , África Subsaariana , Carbono/química , Carbono/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Óxido Nitroso/química , Óxido Nitroso/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...