Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38842517

RESUMO

The purpose of the present study was to clarify the impact of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. Nine older females (mean±SD, 70±6 years) and eleven younger females (20±1 years) completed the study. A passive leg raising (PLR) test was performed wherein the participants were positioned supine (baseline, 0º), and their lower limbs were passively lifted at 10º, 20º, 30º, and 40º (3 min at each angle). Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. The central venous pressure was estimated based on peripheral venous pressure (eCVP), which was monitored using a cannula in the right large antecubital vein. Baseline MSNA was higher in older females compared to younger females. MSNA burst frequency (BF) decreased during the PLR test in both older and younger females, but the magnitude of the decrease in MSNA BF was smaller in older females than in younger females (older, -3.5±1.5 vs. younger, -6.3±1.5 bursts/min at 40º from baseline, P=0.014). The eCVP increased during the PLR in both groups, and there was no difference in the changes in eCVP between the two groups (older, +1.07±0.37 vs. younger, +1.12±0.33 mmHg at 40º from baseline, P=0.941). These results suggest that inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age in females.

2.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R14-R24, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738294

RESUMO

Blood flow to the active muscles and arterial blood pressure (ABP) increase during dynamic exercise, whereas blood flow to inactive organs (e.g., splanchnic organs and inactive limbs) declines. Aging leads to exaggerated ABP responses to exercise in females, but whether this is related to greater splanchnic vasoconstriction is unknown. This study sought to clarify the effect of aging in females on celiac artery blood flow during dynamic light-intensity exercise. Twelve healthy young females (YF: 20 ± 2 yr, mean ± SD) and 12 healthy older females (OF: 71 ± 4 yr) performed dynamic knee-extension and knee-flexion exercises at 30% of heart rate reserve for 4 min. The absolute changes from baseline (Δ) for mean arterial blood pressure (MAP), celiac artery mean blood flow (celMBF), and celiac vascular conductance (celVC) during exercise were calculated. ABP was measured using an automated sphygmomanometer, and celMBF was recorded by Doppler ultrasonography. The increase in MAP during exercise was greater in OF than in YF (YF: +14 ± 7 mmHg, OF: +24 ± 13 mmHg, P = 0.028). The celMBF decreased during exercise in both groups, but there was no significant difference in the response between YF and OF (YF: -93.0 ± 66.1 mL/min, OF: -89.6 ± 64.0 mL/min, P = 0.951). The celVC also decreased during exercise and remained lower than baseline during exercise. However, the response was not different between YF and OF (YF: -1.8 ± 1.0 mL/min/mmHg, OF: -1.5 ± 0.6 mL/min/mmHg, P = 0.517). These results demonstrate that aging in females has minimal influence on splanchnic artery hemodynamic responses during dynamic light-intensity exercise, suggesting that exaggerated ABP responses during exercise in OF are not due to greater splanchnic vasoconstriction.NEW & NOTEWORTHY During exercise, the splanchnic arteries vasoconstrict, contributing to blood flow redistribution and the blood pressure response. Blood pressure responses to exercise are exaggerated with aging in females; however, the physiological mechanism responsible has not been clarified. We show that celiac artery blood flow changes during light-intensity dynamic exercise do not differ with age in females. This indicates the exaggerated blood pressure to exercise with aging is likely not due to a difference in splanchnic vasoconstriction.


Assuntos
Envelhecimento , Artéria Celíaca , Exercício Físico , Humanos , Feminino , Exercício Físico/fisiologia , Envelhecimento/fisiologia , Adulto Jovem , Idoso , Fluxo Sanguíneo Regional , Circulação Esplâncnica , Velocidade do Fluxo Sanguíneo , Pressão Arterial , Vasoconstrição , Pressão Sanguínea/fisiologia , Adulto , Fatores Etários
3.
Sports Med ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762832

RESUMO

Hypertension is recognised as a leading attributable risk factor for cardiovascular disease and premature mortality. Global initiatives towards the prevention and treatment of arterial hypertension are centred around non-pharmacological lifestyle modification. Exercise recommendations differ between professional and scientific organisations, but are generally unanimous on the primary role of traditional aerobic and dynamic resistance exercise. In recent years, isometric exercise training (IET) has emerged as an effective novel exercise intervention with consistent evidence of reductions in blood pressure (BP) superior to that reported from traditional guideline-recommended exercise modes. Despite a wealth of emerging new data and endorsement by select governing bodies, IET remains underutilised and is not widely prescribed in clinical practice. This expert-informed review critically examines the role of IET as a potential adjuvant tool in the future clinical management of BP. We explore the efficacy, prescription protocols, evidence quality and certainty, acute cardiovascular stimulus, and physiological mechanisms underpinning its anti-hypertensive effects. We end the review with take-home suggestions regarding the direction of future IET research.

4.
J Hypertens ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38690928

RESUMO

OBJECTIVE: Isometric handgrip training (IHT) has been shown to reduce blood pressure (BP) in hypertensive patients. However, factors that predict responsiveness to IHT are largely unknown. The aim of this study was to investigate the patient characteristics associated with the antihypertensive response to IHT using a recommended statistical approach for evaluating interindividual responses. METHODS: Data from four randomized controlled trials were joined, totaling 81 patients undergoing IHT (48.8% women; 60 ±â€Š11 years) and 90 control patients (45.6% women; 62 ±â€Š12 years). IHT consisted of 4 × 2 min isometric contractions at 30% of maximal voluntary contraction, performed three times/week for 8-12 weeks. BP was measured at baseline and following IHT and control interventions. The interindividual variation was assessed by the standard deviation of the individual responses (SDir), and linear regression analyses were conducted to explore response predictors. RESULTS: IHT significantly decreased both SBP (-5.4; 95% confidence interval (CI) -9.5 to -1.3 mmHg) and DBP (-2.8; 95% CI -5.1 to -0.6 mmHg). The interindividual variation of BP change was moderate for systolic (SDir = 5.2 mmHg, 0.30 standardized units) and low for diastolic (SDir = 1.7 mmHg, 0.15 standardized units). Sex, age, and BMI were not associated with the antihypertensive effect of IHT. However, a higher baseline SBP (b = -0.467, P < 0.001) and absence of dihydropyridine calcium channel blockers use (b = 0.340, P = 0.001) were associated with greater BP reductions. CONCLUSION: IHT reduced BP in medicated hypertensive patients regardless of age, sex, and BMI. Patients with a higher baseline SBP and those not prescribed dihydropyridine calcium channel blockers were more responsive to IHT.

5.
J Physiol Sci ; 74(1): 19, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500058

RESUMO

The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º. Each angle lasted for 3 min. Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. Baseline MSNA was lower in females compared to males. MSNA burst frequency was decreased during the PLR in both males (- 6.2 ± 0.4 bursts/min at 40º) and females (- 6.5 ± 0.4 bursts/min at 40º), but no significant difference was detected between the two groups (P = 0.61). These results suggest that sex has minimal influence on the inhibition of sympathetic vasomotor outflow during the loading of cardiopulmonary baroreceptors in young individuals.


Assuntos
Perna (Membro) , Músculo Esquelético , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Sistema Nervoso Simpático/fisiologia , Pressorreceptores , Extremidade Inferior , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Frequência Cardíaca
6.
J Appl Physiol (1985) ; 136(4): 917-927, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385178

RESUMO

Microneurographic recordings of muscle sympathetic nerve activity (MSNA) and the succeeding changes in beat-to-beat blood pressure (i.e., sympathetic transduction) provide important insights into the neural control of the circulation in humans. Despite its widespread use, the reliability of this technique remains unknown. Herein, we assessed the intra- and interday test-retest reliability of signal-averaging sympathetic transduction to blood pressure. Data were analyzed from 15 (9 M/6 F) young, healthy participants who completed two baseline recordings of fibular nerve MSNA separated by 60 min (intraday). The interday reliability was obtained in a subset of participants (n = 13, 9 M/4 F) who completed a follow-up MSNA study. Signal-averaging sympathetic transduction was quantified as peak change in diastolic (DBP) and mean arterial pressure (MAP) following a burst of MSNA. Analyses were also computed considering different MSNA burst sizes (quartiles of normalized MSNA) and burst patterns (singlets, couplets, triplets, and quadruplets+), as well as nonburst responses. Intraclass-correlation coefficients (ICCs) were used as the main reliability measure. Peak changes in MAP [intraday: ICC = 0.76 (0.30-0.92), P = 0.006; interday: ICC = 0.91 (0.63-0.97), P < 0.001] demonstrated very good to excellent reliability. Sympathetic transduction of MSNA burst size displayed moderate to very good reliability, though the reliability of MSNA burst pattern was poor to very good. Nonburst responses revealed poor intraday [ICC = 0.37 (-1.05 to 0.80), P = 0.21], but very good interday [ICC = 0.76 (0.18-0.93), P = 0.01] reliability. Intraday reliability measures were consistently lower than interday reliability. Similar results were obtained using DBP. Collectively, these findings provide evidence that the burst-triggering signal-averaging technique is a reliable measure of sympathetic transduction to blood pressure in young, healthy adults.NEW & NOTEWORTHY We found that signal-averaging sympathetic transduction to blood pressure displayed very good to excellent intra- and interday test-retest reliability in healthy, young adults. Reliability analyses according to muscle sympathetic burst size, burst pattern, and nonburst response were less consistent. Results were similar when using diastolic or mean arterial pressure in the transduction calculation. These findings suggest that the signal-averaging technique can be used with confidence to investigate sympathetic transduction to blood pressure in humans across time.


Assuntos
Músculo Esquelético , Sistema Nervoso Simpático , Adulto Jovem , Humanos , Pressão Sanguínea/fisiologia , Reprodutibilidade dos Testes , Músculo Esquelético/fisiologia , Sistema Nervoso Simpático/fisiologia , Frequência Cardíaca/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 326(3): H612-H622, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214907

RESUMO

Discharge of postganglionic muscle sympathetic nerve activity (MSNA) is related poorly to blood pressure (BP) in adults. Whether neural measurements beyond the prevailing level of MSNA can account for interindividual differences in BP remains unclear. The current study sought to evaluate the relative contributions of sympathetic-BP transduction and sympathetic baroreflex gain on resting BP in young adults. Data were analyzed from 191 (77 females) young adults (18-39 years) who underwent continuous measurement of beat-to-beat BP (finger photoplethysmography), heart rate (electrocardiography), and fibular nerve MSNA (microneurography). Linear regression analyses were computed to determine associations between sympathetic-BP transduction (signal-averaging) or sympathetic baroreflex gain (threshold technique) and resting BP, before and after controlling for age, body mass index, and MSNA burst frequency. K-mean clustering was used to explore sympathetic phenotypes of BP control and consequential influence on resting BP. Sympathetic-BP transduction was unrelated to BP in males or females (both R2 < 0.01; P > 0.67). Sympathetic baroreflex gain was positively associated with BP in males (R2 = 0.09, P < 0.01), but not in females (R2 < 0.01; P = 0.80), before and after controlling for age, body mass index, and MSNA burst frequency. K-means clustering identified a subset of participants with average resting MSNA, yet lower sympathetic-BP transduction and lower sympathetic baroreflex gain. This distinct subgroup presented with elevated BP in males (P < 0.02), but not in females (P = 0.10). Sympathetic-BP transduction is unrelated to resting BP, while the association between sympathetic baroreflex gain and resting BP in males reveals important sex differences in the sympathetic determination of resting BP.NEW & NOTEWORTHY In a sample of 191 normotensive young adults, we confirm that resting muscle sympathetic nerve activity is a poor predictor of resting blood pressure and now demonstrate that sympathetic baroreflex gain is associated with resting blood pressure in males but not females. In contrast, signal-averaged measures of sympathetic-blood pressure transduction are unrelated to resting blood pressure. These findings highlight sex differences in the neural regulation of blood pressure.


Assuntos
Barorreflexo , Hipertensão , Adulto Jovem , Humanos , Masculino , Feminino , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático , Músculo Esquelético/inervação
9.
Am J Physiol Heart Circ Physiol ; 326(1): H291-H301, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038716

RESUMO

Blood pressure (BP) follows a circadian rhythm intertwined with the sleep-wake cycle. Acute partial sleep deprivation (PSD; sleep ≤ 6 h) can increase BP, associated with increased cardiovascular risk. Acute exercise can reduce BP for up to 24 h, a phenomenon termed postexercise hypotension. The present study tested whether aerobic exercise could mitigate the augmented 24-h ambulatory BP caused by acute PSD. Twenty-four young otherwise healthy adults (22 ± 3 yr; 14 females; self-reported chronotypes: 6 early/10 intermediate/8 late; Pittsburgh sleep quality index: 17 good/7 poor sleepers) completed a randomized crossover trial in which, on different days, they slept normally (2300-0700), restricted sleep [0330-0700 (PSD)], and cycled for 50 min (70-80% predicted heart rate maximum) before PSD. Ambulatory BP was assessed every 30 min until 2100 the next day. Acute PSD increased 24-h systolic BP (control 117 ± 9 mmHg, PSD 122 ± 9 mmHg; P < 0.001) and prior exercise attenuated (exercise + PSD 120 ± 9 mmHg; P = 0.04 vs. PSD) but did not fully reverse this response (exercise + PSD, P = 0.02 vs. control). Subgroup analysis revealed that the 24-h systolic BP reduction following exercise was specific to late types (PSD 119 ± 7 vs. exercise + PSD 116 ± 6 mmHg; P < 0.05). Overall, habitual sleep quality was negatively correlated with the change in daytime systolic BP following PSD (r = -0.56, P < 0.01). These findings suggest that the ability of aerobic cycling exercise to counteract the hemodynamic effects of acute PSD in young adults may be dependent on chronotype and that habitual sleep quality can predict the daytime BP response to acute PSD.NEW & NOTEWORTHY We demonstrate that cycling exercise attenuates, but does not fully reverse, the augmented 24-h ambulatory blood pressure (BP) response caused by acute partial sleep deprivation (PSD). This response was primarily observed in late chronotypes. Furthermore, daytime BP after acute PSD is related to habitual sleep quality, with better sleepers being more prone to BP elevations. This suggests that habitual sleeping habits can influence BP responses to acute PSD and their interactions with prior cycling exercise.


Assuntos
Hipertensão , Privação do Sono , Feminino , Humanos , Adulto Jovem , Pressão Sanguínea/fisiologia , Monitorização Ambulatorial da Pressão Arterial , Cronotipo , Exercício Físico/fisiologia , Sono/fisiologia , Qualidade do Sono , Masculino , Adulto , Estudos Cross-Over
10.
Appl Physiol Nutr Metab ; 49(3): 375-384, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944127

RESUMO

Endothelium-dependent vasodilation can be tested using a variety of shear stress paradigms, some of which may involve the production of reactive oxygen species. The purpose of this study was to compare different methods for assessing endothelial function and their specific involvement of reactive oxygen species and influence of aerobic training status. Twenty-nine (10 F) young and healthy participants (VO2max: 34-74 mL·kg-1·min-1) consumed either an antioxidant cocktail (AOC; vitamin C, vitamin E, α-lipoic acid) or placebo (PLA) on each of two randomized visits. Endothelial function was measured via three different brachial artery flow-mediated dilation (FMD) tests: reactive hyperemia (RH-FMD: 5 min cuff occlusion and release), sustained shear (SS-FMD: 6 min rhythmic handgrip), and progressive sustained shear (P-SS-FMD: three intensities of 3 min of rhythmic handgrip). Baseline artery diameter decreased (all tests: 3.8 ± 0.5 to 3.7 ± 0.6 mm, p = 0.004), and shear rate stimulus increased (during RH-FMD test, p = 0.021; during SS-FMD test, p = 0.36; during P-SS-FMD test, p = 0.046) following antioxidant consumption. However, there was no difference in FMD following AOC consumption (RH-FMD, PLA: 8.1 ± 2.6%, AOC: 8.2 ± 3.5%, p = 0.92; SS-FMD, PLA: 6.9 ± 3.9%, AOC: 7.8 ± 5.2%, p = 0.15) or FMD per shear rate slope (P-SS-FMD: PLA: 0.0039 ± 0.0035 mm·s-1, AOC: 0.0032 ± 0.0017 mm·s-1, p = 0.28) and this was not influenced by training status/fitness (all p > 0.60). Allometric scaling did not alter these outcomes (all p > 0.40). Reactive oxygen species may not be integral to endothelium-dependent vasodilation tested using reactive, sustained, or progressive shear protocols in young males and females, regardless of fitness level.


Assuntos
Antioxidantes , Artéria Braquial , Feminino , Masculino , Adulto Jovem , Humanos , Antioxidantes/farmacologia , Dilatação , Força da Mão , Espécies Reativas de Oxigênio , Exercício Físico , Poliésteres
12.
J Appl Physiol (1985) ; 135(5): 1102-1114, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37795529

RESUMO

Females generally have smaller blood pressure (BP) responses to isolated muscle mechanoreflex and metaboreflex activation compared with males, which may explain sex differences in BP responses to voluntary exercise. The mechanoreflex may be sensitized during exercise, but whether mechanoreflex-metaboreflex interactions differ by sex or variations in sex hormones remains unknown. Thirty-one young healthy subjects (females, n = 16) performed unilateral passive cycling (mechanoreflex), active cycling (40% peak Watts), postexercise circulatory occlusion (PECO; metaboreflex), and passive cycling combined with PECO (combined mechanoreflex and metaboreflex activation). Beat-to-beat BP, heart rate, inactive leg vascular conductance, and active leg muscle oxygenation were measured. Ten females underwent exploratory testing during low- and high-hormone phases of their self-reported menstrual cycle or oral contraceptive use. Systolic BP and heart rate responses did not differ between sexes during active cycling [Δ30 ± 9 vs. 29 ± 11 mmHg (males vs. females), P = 0.9; Δ33 ± 8 vs. 35 ± 6 beats/min, P = 0.4] or passive cycling with PECO (Δ26 ± 11 vs. 21 ± 10 mmHg, P = 0.3; Δ14 ± 7 vs. 18 ± 15 beats/min, P = 0.3). Passive cycling with PECO revealed additive, not synergistic, effects for systolic BP [males: Δ23 ± 14 vs. 26 ± 11 mmHg (sum of isolated passive cycling and PECO vs. combined activation); females: Δ26 ± 11 vs. 21 ± 12 mmHg, interaction P = 0.05]. Results were consistent in subset analyses with sex differences in active cycling BP (P > 0.1) and exploratory analyses of hormone phase (P > 0.4). Despite a lack of statistical equivalence, no differences in cardiovascular responses were found during combined mechanoreflex-metaboreflex activation between sexes or hormone levels. These results provide preliminary data regarding the involvement of muscle mechanoreflex-metaboreflex interactions in mediating sex differences in voluntary exercise BP responses.NEW & NOTEWORTHY The muscle mechanoreflex may be sensitized by metabolites during exercise. We show that cardiovascular responses to combined mechanoreflex (passive cycling) and metaboreflex (postexercise circulatory occlusion) activation are primarily additive and do not differ between males and females, or across variations in sex hormones in females. Our findings provide new insight into the contributions of muscle mechanoreflex-metaboreflex interactions as a cause for prior reports that females have smaller blood pressure responses to voluntary exercise.


Assuntos
Sistema Cardiovascular , Humanos , Feminino , Adulto , Masculino , Músculo Esquelético/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca , Hormônios , Hormônios Esteroides Gonadais/metabolismo , Reflexo/fisiologia , Força da Mão
13.
J Appl Physiol (1985) ; 135(4): 956-967, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675470

RESUMO

The purpose of this study was to clarify the effect of sex and menstrual cycle phase on celiac artery blood flow during dynamic exercise in healthy young humans. Eleven healthy young females (21 ± 2 yr, means ± SD) and 10 males (23 ± 3 yr) performed dynamic knee-extension and -flexion exercises at 30% of heart rate reserve for 4 min. The percent changes from baseline (Δ) for mean arterial blood pressure (MAP), mean blood flow (celMBF) in the celiac artery, and celiac vascular conductance (celVC) during exercise were calculated. Arterial blood pressure was measured using an automated sphygmomanometer, and celiac artery blood flow was recorded by Doppler ultrasonography. Female subjects performed the exercise test in the early follicular phase (EF) and in the midluteal phase (ML) of their menstrual cycle. The increase in MAP during exercise was not significantly (P > 0.05) different between sexes or between menstrual cycle phases (ΔMAP, EF in females: +16.6 ± 6.4%, ML in females: +20.2 ± 11.7%, and males: +19.9 ± 12.2%). The celMBF decreased during exercise in each group, but the response was not significantly (P > 0.05) different between sexes or between menstrual cycle phases (ΔcelMBF, EF in females: -24.6 ± 15.5%, ML in females: -25.2 ± 18.7%, and males: -29.2 ± 4.0%). The celVC decreased during dynamic exercise in each group, with no significant (P > 0.05) difference in the responses between sexes or between menstrual cycle phases (ΔcelVC, EF in females: -38.3 ± 15.0%, ML in females: -41.5 ± 19.1%, and males: -43.4 ± 7.2%). These results suggest that sex and menstrual cycle phase have minimal influence on hemodynamic responses in the splanchnic artery during dynamic moderate-intensity exercise in young healthy individuals.NEW & NOTEWORTHY During dynamic exercise, splanchnic organ blood flow is reduced from resting values. Whether sex and menstrual cycle phase influence splanchnic blood flow responses during exercise remains unknown. We show that the decrease in celiac artery blood flow during dynamic leg exercise does not differ between young females and males or between menstrual cycle phases. In young individuals, sex and menstrual cycle have minimal influence on splanchnic artery hemodynamic responses during dynamic moderate-intensity leg exercise.


Assuntos
Artéria Celíaca , Perna (Membro) , Masculino , Humanos , Feminino , Ciclo Menstrual/fisiologia , Hemodinâmica , Fase Folicular/fisiologia
14.
Physiol Rep ; 11(14): e15772, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37474301

RESUMO

This case characterizes the clinical motor, perceived fatigue, gait and balance, cardiovascular, neuromuscular, and cardiopulmonary responses after cycling 7850 km over 85 days in a physically active 57-year-old male with idiopathic Parkinson's disease (PD). The participant cycled 73/85 days (86%); averaging 107.5 ± 48.9 km/day over 255.4 ± 108.8 min. Average cycling heart rate was 117 ± 11 bpm. The Unified Parkinson Disease Rating Scale (UPDRS) Part III motor score decreased from 46 to 26 (-44%), while the mean Parkinson Fatigue Scale (PFS-16) score decreased from 3.4 to 2.3 (-32%). Peak power output on a maximal aerobic exercise test increased from 326 to 357 W (+10%), while peak isotonic power of single-leg knee extension increased from 312 to 350 W (+12%). Maximal oxygen uptake following the trip was 53.1 mL/min/kg or 151% of predicted. Resting heart rate increased from 48 to 71 bpm (+48%). The systolic and diastolic blood pressure responses to a 2-min submaximal static handgrip exercise were near absent at baseline (∆2/∆2 mm Hg) but appeared normal post-trip (∆17/∆9 mm Hg). Gait and static balance measures were unchanged. This case report demonstrates the capacity for physiological and clinical adaptations to a high-volume, high-intensity cycling regiment in a physically active middle-aged male with PD.


Assuntos
Doença de Parkinson , Pessoa de Meia-Idade , Humanos , Masculino , Força da Mão , Ciclismo/fisiologia , Exercício Físico , Fadiga
15.
Am J Physiol Heart Circ Physiol ; 325(3): H529-H538, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477687

RESUMO

A single high-fat Western meal transiently reduces endothelium-dependent vasodilation at rest, but the interaction with sympathetic vasoconstrictor activity during exercise remains unknown. Herein, we tested the hypothesis that a single high-fat Western meal would impair the ability of contracting skeletal muscle to offset vascular responsiveness to sympathetic activation during exercise, termed functional sympatholysis. In 18 (10 females/8 males) healthy young adults, forearm blood flow (Doppler ultrasound) and beat-to-beat arterial pressure (photoplethysmography) were measured during lower-body negative pressure (LBNP; -20 mmHg) applied at rest and simultaneously during low (15% maximum contraction) and moderate (30% maximum contraction)-intensity rhythmic handgrip exercise. The magnitude of sympatholysis was calculated as the difference of LBNP-induced changes in forearm vascular conductance (FVC) between handgrip and rest. Experiments were performed preprandial and 1 h, 2 h, and 3 h after a high- or low-fat meal. In the preprandial state, LBNP decreased resting FVC (Δ-54 ± 10%), and these responses were attenuated during low (Δ-17 ± 7%)- and moderate (Δ-8 ± 6%)-intensity handgrip exercise. Following a high-fat meal, LBNP induced attenuated decreases in resting FVC (3 h postprandial, Δ-47 ± 10%, P = 0.002 vs. preprandial) and blunted attenuation of FVC during low (3 h postprandial, Δ-23 ± 8%, P = 0.001 vs. preprandial)- and moderate (3 h postprandial, Δ-16 ± 6%, P < 0.001 vs. preprandial)-intensity handgrip exercise. The high-fat meal attenuated the magnitude of sympatholysis during low (preprandial, 38 ± 7 vs. 3 h postprandial, 23 ± 8%, P < 0.001)- and moderate (preprandial, 46 ± 11 vs. 3 h postprandial, 31 ± 10%, P < 0.001)-intensity handgrip exercise. The low-fat meal had no impact on these responses. In conclusion, a single high-fat Western meal modulates sympathetic vasoconstriction at rest and during low- and moderate-intensity handgrip exercise in young healthy adults.NEW & NOTEWORTHY We observed that a single high-fat Western meal, but not an isocaloric low-fat meal, attenuated the sympathetic vasoconstriction at rest and the ability of the active skeletal muscle to counteract the vascular responsiveness to sympathetic activation (i.e., functional sympatholysis) during low- and moderate-intensity rhythmic handgrip exercise in healthy young adults. Our findings highlight the potential deleterious vascular effect associated with the consumption of a Western diet.


Assuntos
Exercício Físico , Força da Mão , Masculino , Feminino , Adulto Jovem , Humanos , Força da Mão/fisiologia , Exercício Físico/fisiologia , Vasoconstritores/farmacologia , Vasoconstrição , Hemodinâmica , Músculo Esquelético/irrigação sanguínea , Sistema Nervoso Simpático , Contração Muscular , Antebraço/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia
16.
J Appl Physiol (1985) ; 135(1): 154-164, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289954

RESUMO

The sympathetic nervous system is important for cardiovascular regulation, particularly during acute stress. Efferent sympathetic outflow can be regulated in an organ-dependent manner, but whether renal and leg vasoconstriction are associated at rest or during sympathetic stressors is unknown. Therefore, we sought to determine the relationships between muscle sympathetic nerve activity (MSNA), leg vascular conductance (LVC), and renal vascular conductance (RVC) at rest and during common laboratory-based sympathoexcitatory stimuli in a cohort of young healthy adults. Beat-to-beat arterial pressure (photoplethysmography), MSNA (microneurography), superficial femoral artery blood flow, and renal artery blood velocity (Doppler ultrasound) were measured at rest and during static handgrip exercise (30% maximal voluntary contraction), postexercise circulatory occlusion (PECO), and cold stress (hand in 3.8 ± 1.3°C water) in 37 young healthy adults (16 females, 21 males). At rest, RVC was unrelated to LVC (r = -0.11, P = 0.55) or MSNA burst frequency (ρ = -0.22, P = 0.26). Static handgrip, PECO, and cold stress each induced an increase in mean arterial pressure and MSNA and a reduction in RVC (all P < 0.001). LVC was unaltered during stress (all P ≥ 0.16), with the exception of a reduction during the second minute of cold stress (P = 0.03). During stress, changes in RVC were not associated with changes in LVC (handgrip: r = -0.24, P = 0.21; PECO: ρ = -0.04, P = 0.82; cold stress: r = -0.17, P = 0.38) or MSNA (handgrip: ρ = -0.14, P = 0.48; PECO: r = 0.27, P = 0.15; cold stress: r = -0.27, P = 0.16). Furthermore, MSNA was not associated with LVC at rest or during stress (all P ≥ 0.12). The present findings highlight the differential control of regional sympathetic vasoconstriction at rest and during stress in young healthy humans.NEW & NOTEWORTHY The sympathetic nervous system plays a critical role in cardiovascular regulation at rest and during stress. We demonstrate that renal artery vascular conductance is unrelated to superficial femoral artery vascular conductance or muscle sympathetic nerve activity at rest or during laboratory-based sympathetic stressors in young healthy adults. These findings support the concept of differential control of peripheral sympathetic outflow at rest and during stress in humans.


Assuntos
Força da Mão , Perna (Membro) , Masculino , Adulto , Feminino , Humanos , Força da Mão/fisiologia , Músculo Esquelético/fisiologia , Artéria Femoral/fisiologia , Sistema Nervoso Simpático/fisiologia , Pressão Sanguínea/fisiologia
18.
Med Sci Sports Exerc ; 55(9): 1660-1671, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37017549

RESUMO

PURPOSE: Exercise blood pressure (BP) responses are thought to be determined by relative exercise intensity (percent maximal voluntary contraction (MVC) strength). However, cross-sectional studies report that during a static contraction, higher absolute force is associated with greater BP responses to relative intensity exercise and subsequent muscle metaboreflex activation with postexercise circulatory occlusion (PECO). We hypothesized that a bout of unaccustomed eccentric exercise would reduce knee extensor MVC and subsequently attenuate BP responses to PECO. METHODS: Continuous BP, heart rate, muscle oxygenation, and knee extensor electromyography were recorded in 21 young healthy individuals (female, n = 10) during 2 min of 20% MVC static knee extension exercise and 2 min of PECO, performed before and 24 h after 300 maximal knee extensor eccentric contractions to cause exercise-induced muscle weakness. As a control, 14 participants repeated the eccentric exercise 4 wks later to test whether BP responses were altered when exercise-induced muscle weakness was attenuated via the protective effects of the repeated bout effect. RESULTS: Eccentric exercise reduced MVC in all participants (144 ± 43 vs 110 ± 34 N·m, P < 0.0001). BP responses to matched relative intensity static exercise (lower absolute force) were unchanged after eccentric exercise ( P > 0.99) but were attenuated during PECO (systolic BP: 18 ± 10 vs 12 ± 9 mm Hg, P = 0.02). Exercise-induced muscle weakness modulated the deoxygenated hemoglobin response to static exercise (64% ± 22% vs 46% ± 22%, P = 0.04). When repeated after 4 wks, exercise-induced weakness after eccentric exercise was attenuated (-21.6% ± 14.3% vs -9.3 ± 9.7, P = 0.0002) and BP responses to PECO were not different from control values (all, P > 0.96). CONCLUSIONS: BP responses to muscle metaboreflex activation, but not exercise, are attenuated by exercise-induced muscle weakness, indicating a contribution of absolute exercise intensity on muscle metaboreflex activation.


Assuntos
Sistema Cardiovascular , Músculo Esquelético , Humanos , Feminino , Músculo Esquelético/fisiologia , Pressão Sanguínea , Estudos Transversais , Debilidade Muscular/etiologia , Contração Muscular/fisiologia
19.
Med Sci Sports Exerc ; 55(7): 1250-1257, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878187

RESUMO

PURPOSE: Ischemic preconditioning (IPC), a procedure that involves the cyclic induction of limb ischemia and reperfusion via tourniquet inflation, has been reported to improve exercise capacity and performance, but the underlying mechanisms remain unclear. During exercise, sympathetically mediated vasoconstriction is dampened in active skeletal muscle. This phenomenon, termed functional sympatholysis, plays a critical role in maintaining oxygen delivery to working skeletal muscle and may contribute to determining exercise capacity. Herein, we investigate the effects of IPC on functional sympatholysis in humans. METHODS: In 20 (10M/10F) healthy young adults, forearm blood flow (Doppler ultrasound) and beat-to-beat arterial pressure (finger photoplethysmography) were measured during lower body negative pressure (LBNP; -20 mm Hg) applied at rest and simultaneously during rhythmic handgrip exercise (30% maximum contraction) before and after local IPC (4 × 5-min 220 mm Hg) or sham (4 × 5-min 20 mm Hg). Forearm vascular conductance (FVC) was calculated as forearm blood flow/mean arterial pressure and the magnitude of sympatholysis as the difference of LBNP-induced changes in FVC between handgrip and rest. RESULTS: At baseline, LBNP decreased FVC (females [F] = ∆-41% ± 19%; males [M] = ∆-44% ± 10%), and these responses were attenuated during handgrip (F = ∆-8% ± 9%; M = ∆-8% ± 7%). After IPC, LBNP induced similar decreases in resting FVC (F = ∆-37% ± 19%; M = ∆-44% ± 13%). However, during handgrip, this response was further attenuated in males (∆-3% ± 9%, P = 0.02 vs pre) but not females (∆-5% ± 10%, P = 0.13 vs pre), which aligned with an IPC-mediated increase in sympatholysis (M-pre = 36% ± 10% vs post = 40% ± 9%, P = 0.01; F-pre = 32% ± 15% vs post = 32% ± 14%, P = 0.82). Sham IPC had no effect on any variables. CONCLUSIONS: These findings highlight a sex-specific effect of IPC on functional sympatholysis and provide evidence of a potential mechanism underlying the beneficial effects of IPC on human exercise performance.


Assuntos
Precondicionamento Isquêmico , Simpatolíticos , Masculino , Feminino , Adulto Jovem , Humanos , Simpatolíticos/farmacologia , Força da Mão/fisiologia , Sistema Nervoso Simpático/fisiologia , Hemodinâmica , Antebraço/irrigação sanguínea , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Fluxo Sanguíneo Regional/fisiologia
20.
J Appl Physiol (1985) ; 134(2): 455-466, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656982

RESUMO

The term exercise-induced cardiac fatigue (EICF) has typically been used to describe a transient reduction in cardiac function following prolonged-strenuous exercise. Recent evidence demonstrates that EICF can occur following only 45 min of high-intensity exercise when assessed using exercising stress echocardiography. This investigation sought to examine whether sprint intervals (SIT; 6 × 30 s Wingate tests), or 90-min moderate-cycling with sprint intervals (MIX; 90 min with 1 × 30 s Wingate test every 15 min) would cause greater EICF than 90 min (CON) or 3 h (LONG) moderate-cycling assessed using stress echocardiography, with a secondary aim to interrogate sex differences in EICF. Seventeen participants (M: 9, F: 8) underwent three cycling sessions with stress-echocardiography performed before-and-after each condition at a target heart rate (HR) of 100 beats·min-1, with the CON testing occurring at the mid-point of the 3 h LONG condition. For all conditions, measures of left ventricular (LV) systolic [stroke volume, ejection fraction (EF), peak longitudinal strain, isovolumetric contraction time, S') and diastolic (E/A, E', isovolumetric relaxation time, longitudinal strain rate) function were reduced after exercise (all P < 0.05). In the right ventricle (RV), systolic function was reduced (tricuspid annular plane systolic excursion, S', peak longitudinal strain and strain rate) following all conditions, and fractional area change was reduced to the greatest degree following SIT (condition × time, P = 0.01). Females demonstrated lesser impairments in LV EF, and elastance (ESP/ESV) compared with males (P < 0.05). Markers of EICF occurred similarly following all cycling loads, suggesting the functional changes may be due to altered loading conditions and reduced stress-echocardiography workload. However, males experienced greater cardiac alterations in some measures, likely due to greater changes in postexercise loading conditions.NEW & NOTEWORTHY This investigation sought to determine the role of exercise intensity on the magnitude of exercise-induced cardiac fatigue using stress echocardiography to maintain loading conditions, with a secondary purpose of assessing sex differences. Unexpectedly, it was found that all cycling loads elicited the same magnitude of functional alteration, which likely represents a common response to exercise and stress echocardiography, rather than intrinsic cardiac impairment. Males demonstrated greater alterations than females, likely due to sex differences in postexercise hemodynamics.


Assuntos
Ecocardiografia , Função Ventricular Esquerda , Humanos , Masculino , Feminino , Função Ventricular Esquerda/fisiologia , Volume Sistólico/fisiologia , Exercício Físico/fisiologia , Fadiga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...