Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37760233

RESUMO

The endocannabinoid system (ECS) has emerged as a potential therapeutic target in veterinary medicine due to its involvement in a wide range of physiological processes including pain, inflammation, immune function, and neurological function. Modulation of the ECS receptors has been shown to have anti-inflammatory, analgesic, and immunomodulatory effects in various animal models of disease, including dogs with osteoarthritis. The goal of this study was to identify and compare the cellular expression and distribution of cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) and the cannabinoid-related G protein-coupled receptor 55 (GPR55) on the synovial cells of hip and stifle joints of seven dogs of different breeds without overt signs of osteoarthritis (OA). The synovial membranes of seven hips and seven stifle joints were harvested post mortem. The expression of the CB1R, CB2R, and GPR55 present in the synovial tissues was investigated using qualitative and quantitative immunofluorescence and Western blot (Wb) analysis. Synoviocytes of the stifle and hip joints expressed CB1R, CB2R, and GPR55 immunoreactivity (IR); no significant differences were observed for each different joint. Cannabinoid receptor 2- and GPR55-IR were also expressed by macrophages, neutrophils, and vascular cells. The ECS receptors were widely expressed by the synovial elements of dogs without overt signs of OA. It suggests that the ECS could be a target for the therapeutic use of Cannabis sativa extract in canine arthropathies.

2.
Animals (Basel) ; 12(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36009622

RESUMO

Visual information is processed in the optic lobes, which consist of three retinotopic neuropils. These are the lamina, the medulla and the lobula. Biogenic amines play a crucial role in the control of insect responsiveness, and serotonin is clearly related to aggressiveness in invertebrates. Previous studies suggest that serotonin modulates aggression-related behaviours, possibly via alterations in optic lobe activity. The aim of this investigation was to immunohistochemically localize the distribution of serotonin transporter (SERT) in the optic lobe of moderate, docile and aggressive worker honeybees. SERT-immunoreactive fibres showed a wide distribution in the lamina, medulla and lobula; interestingly, the highest percentage of SERT immunoreactivity was observed across all the visual neuropils of the docile group. Although future research is needed to determine the relationship between the distribution of serotonin fibres in the honeybee brain and aggressive behaviours, our immunohistochemical study provides an anatomical basis supporting the role of serotonin in aggressive behaviour in the honeybee.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...