Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 9(1): 68-97, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28077781

RESUMO

A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates aging without affecting proliferative growth or viability. Genetic and biochemical criteria reveal LS1 to be a weak Top2 poison. Top2 poisons induce the accumulation of covalent Top2-linked DNA double strand breaks that, if left unrepaired, lead to genome instability and death. LS1 is toxic to cells deficient in homologous recombination, suggesting that the damage it induces is normally mitigated by genome maintenance systems. The essential roles of yTop2 in proliferating cells may come with a fitness trade-off in older cells that are less able to sense or repair yTop2-mediated DNA damage. Consistent with this idea, cells live longer when yTop2 expression levels are reduced. These results identify intrinsic yTop2-mediated DNA damage as potentially manageable cause of aging.


Assuntos
Senescência Celular/genética , DNA Topoisomerases Tipo II/genética , Venenos/farmacologia , Saccharomyces cerevisiae/metabolismo , Inibidores da Topoisomerase II/farmacologia , Senescência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Saccharomyces cerevisiae/genética
2.
Anal Biochem ; 474: 59-65, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25572876

RESUMO

Acyl-coenzyme A (CoA) thioesters are key metabolites in numerous anabolic and catabolic pathways, including fatty acid biosynthesis and ß-oxidation, the Krebs cycle, and cholesterol and isoprenoid biosynthesis. Stable isotope dilution-based methodology is the "gold standard" for quantitative analyses by mass spectrometry. However, chemical synthesis of families of stable isotope-labeled metabolites such as acyl-CoA thioesters is impractical. Previously, we biosynthetically generated a library of stable isotope internal standard analogs of acyl-CoA thioesters by exploiting the essential requirement in mammals and insects for pantothenic acid (vitamin B5) as a metabolic precursor for the CoA backbone. By replacing pantothenic acid in the cell medium with commercially available [(13)C3(15)N1]-pantothenic acid, mammalian cells exclusively incorporated [(13)C3(15)N1]-pantothenate into the biosynthesis of acyl-CoA and acyl-CoA thioesters. We have now developed a much more efficient method for generating stable isotope-labeled CoA and acyl-CoAs from [(13)C3(15)N1]-pantothenate using stable isotope labeling by essential nutrients in cell culture (SILEC) in Pan6-deficient yeast cells. Efficiency and consistency of labeling were also increased, likely due to the stringently defined and reproducible conditions used for yeast culture. The yeast SILEC method greatly enhances the ease of use and accessibility of labeled CoA thioesters and also provides proof of concept for generating other labeled metabolites in yeast mutants.


Assuntos
Acil Coenzima A/metabolismo , Técnicas de Cultura de Células/métodos , Ésteres/metabolismo , Marcação por Isótopo/métodos , Ácido Pantotênico/metabolismo , Saccharomyces cerevisiae/metabolismo , Acil Coenzima A/química , Animais , Vias Biossintéticas , Linhagem Celular Tumoral , Camundongos , Ácido Pantotênico/química
3.
Appl Microbiol Biotechnol ; 90(2): 625-34, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21318364

RESUMO

Clostridium thermocellum, an anaerobic, thermophilic, and ethanogenic bacterium produces a large cellulase complex termed the cellulosome and many free glycosyl hydrolases. Most cellulase genes scatter around the genome. We mapped the transcripts of the six-gene cluster celC-glyR3-licA-orf4-manB-celT and determined their transcription initiation sites by primer extension. Northern blot showed that celC-glyR3-licA were co-transcribed into a polycistronic messenger with the transcription initiation site at -20 bp. Furthermore, RT-PCR mapping showed that manB and celT, two cellulosomal genes immediately downstream, were co-transcribed into a bicistronic messenger with the initiation site at -233 bp. In contrast, rf4 was transcribed alone with the two initiation sites at -130 and -138 bp, respectively. Finally, quantitative RT-PCR analysis showed that celC, glyR3, and licA were coordinately induced by growing on laminarin, a ß-1,3 glucan. Gene expression peaked at the late exponential phase. Taking together with our previous report that GlyR3 binds to the celC promoter in the absence of laminaribiose, a ß-1,3 glucose dimer, these results indicate that celC, glyR3, and licA form an operon repressible by GlyR3 and inducible by laminaribiose, signaling the availability of ß-1,3 glucan. The celC operon is the first glycosyl hydrolase operon reported in this bacterium.


Assuntos
Proteínas de Bactérias/genética , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Família Multigênica , Transcrição Gênica , beta-Glucosidase/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Celulase/genética , Celulase/metabolismo , Dissacarídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glucanos , Manose-6-Fosfato Isomerase/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , N-Glicosil Hidrolases/metabolismo , Nucleotidiltransferases/genética , Óperon , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta-Glucosidase/metabolismo
4.
Autophagy ; 5(1): 75-81, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18989095

RESUMO

Piecemeal microautophagy of the nucleus (PMN) selectively removes and degrades small fragments of the Saccharomyces cerevisiae nucleus. Inter-organelle contact sites called nucleus-vacuole (NV) junctions determine the selectivity of PMN by establishing a platform for the biogenesis of PMN blebs and vesicles. PMN structures can be observed by fluorescence microscopy using GFP-tagged reporters; however, this approach is best supported with quantitative immunoblot assays of PMN-specific cargo degradation. Together, these assays should facilitate the further study of this fascinating but poorly understood autophagic process in different genetic backgrounds, physiological states, and environmental conditions.


Assuntos
Autofagia , Núcleo Celular/metabolismo , Técnicas Citológicas/métodos , Saccharomyces cerevisiae/citologia , Proteínas de Bactérias/metabolismo , Estruturas da Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
5.
Traffic ; 9(10): 1653-64, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18694438

RESUMO

The endoplasmic reticulum (ER) in Saccharomyces cerevisiae is largely divided between perinuclear and cortical compartments. Yeast Nvj1 localizes exclusively to small patches on the perinuclear ER where it interacts with Vac8 in the vacuole membrane to form nucleus-vacuole (NV) junctions. Three regions of Nvj1 mediate the biogenesis of NV junctions. A membrane-spanning domain targets the protein to the ER. The C-terminus binds Vac8 in the vacuole membrane, which induces the clustering of both proteins into NV junctions. The luminal N-terminus is required for strict perinuclear localization. Three-dimensional cryo-electron tomography reveals that Nvj1 clamps the separation between the two nuclear membranes to half the width of bulk nuclear envelope. The N-terminus contains a hydrophobic sequence bracketed by basic residues that resembles outer mitochondrial membrane signal-anchors. The hydrophobic sequence can be scrambled or reversed without affecting function. Mutations that reduce the hydrophobicity of the core sequence or affect the distribution of basic residues cause mislocalization to the cortical ER. We conclude that the N-terminus of Nvj1 is a retention sequence that bridges the perinuclear lumen and inserts into the inner nuclear membrane.


Assuntos
Retículo Endoplasmático/metabolismo , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Microscopia Crioeletrônica , Retículo Endoplasmático/ultraestrutura , Genes Reporter , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Microscopia Confocal , Dados de Sequência Molecular , Membrana Nuclear/ultraestrutura , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Vacúolos/ultraestrutura
6.
FEMS Yeast Res ; 5(2): 169-77, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15489200

RESUMO

The replicative lifespan of Saccharomyces cerevisiae is determined by both genetic and environmental factors. Many of the same factors determine the lifespan of metazoan animals. The lack of fast and reliable lifespan assays has limited the pace of yeast aging research. In this study we describe a novel strategy for assaying replicative lifespan in yeast, and apply it in a screening of mutants that are resistant to pro-oxidants. The assay reproduces the lifespan-shortening effects of deleting SIR2 and of growth in the presence of paraquat, a pro-oxidant. The lifespan-increasing activity of resveratrol is also reproduced. Compared to current assays, this new strategy promises to significantly increase the possible number of replicative-lifespan determinations.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Contagem de Colônia Microbiana/métodos , Meios de Cultura , Galactose/metabolismo , Glucose/metabolismo , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutagênese Insercional , Oxidantes/farmacologia , Estresse Oxidativo/fisiologia , Consumo de Oxigênio , Paraquat/farmacologia , Resveratrol , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/deficiência , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/deficiência , Sirtuínas/genética , Sirtuínas/metabolismo , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...