Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746089

RESUMO

We have identified a NMIIA and IIB-specific small molecule inhibitor, MT-125, and have studied its effects in GBM. MT-125 has high brain penetrance and retention and an excellent safety profile; blocks GBM invasion and cytokinesis, consistent with the known roles of NMII; and prolongs survival as a single agent in murine GBM models. MT-125 increases signaling along both the PDGFR- and MAPK-driven pathways through a mechanism that involves the upregulation of reactive oxygen species, and it synergizes with FDA-approved PDGFR and mTOR inhibitors in vitro . Combining MT-125 with sunitinib, a PDGFR inhibitor, or paxalisib, a combined PI3 Kinase/mTOR inhibitor significantly improves survival in orthotopic GBM models over either drug alone, and in the case of sunitinib, markedly prolongs survival in ∼40% of mice. Our results provide a powerful rationale for developing NMII targeting strategies to treat cancer and demonstrate that MT-125 has strong clinical potential for the treatment of GBM. Highlights: MT-125 is a highly specific small molecule inhibitor of non-muscle myosin IIA and IIB, is well-tolerated, and achieves therapeutic concentrations in the brain with systemic dosing.Treating preclinical models of glioblastoma with MT-125 produces durable improvements in survival.MT-125 stimulates PDGFR- and MAPK-driven signaling in glioblastoma and increases dependency on these pathways.Combining MT-125 with an FDA-approved PDGFR inhibitor in a mouse GBM model synergizes to improve median survival over either drug alone, and produces tumor free, prolonged survival in over 40% of mice.

2.
Pharmacol Res ; 202: 107143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499081

RESUMO

Substance use disorders (SUD) are chronic relapsing disorders governed by continually shifting cycles of positive drug reward experiences and drug withdrawal-induced negative experiences. A large body of research points to plasticity within systems regulating emotional, motivational, and cognitive processes as drivers of continued compulsive pursuit and consumption of substances despite negative consequences. This plasticity is observed at all levels of analysis from molecules to networks, providing multiple avenues for intervention in SUD. The cytoskeleton and its regulatory proteins within neurons and glia are fundamental to the structural and functional integrity of brain processes and are potentially the major drivers of the morphological and behavioral plasticity associated with substance use. In this review, we discuss preclinical studies that provide support for targeting the brain cytoskeleton as a therapeutic approach to SUD. We focus on the interplay between actin cytoskeleton dynamics and exposure to cocaine, methamphetamine, alcohol, opioids, and nicotine and highlight preclinical studies pointing to a wide range of potential therapeutic targets, such as nonmuscle myosin II, Rac1, cofilin, prosapip 1, and drebrin. These studies broaden our understanding of substance-induced plasticity driving behaviors associated with SUD and provide new research directions for the development of SUD therapeutics.


Assuntos
Síndrome de Abstinência a Substâncias , Transtornos Relacionados ao Uso de Substâncias , Humanos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Citoesqueleto , Citoesqueleto de Actina/metabolismo , Encéfalo , Síndrome de Abstinência a Substâncias/metabolismo
3.
Anat Rec (Hoboken) ; 307(3): 581-591, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37638403

RESUMO

Osteogenesis imperfecta (OI) is a disorder of type I collagen characterized by abnormal bone formation. The OI craniofacial phenotype includes midfacial underdevelopment, as well as neurocranial changes (e.g., macrocephaly and platybasia) that may also affect underlying nervous tissues. This study aims to better understand how OI affects the integrated development of the neurocranium and the brain. Juvenile and adult mice with OI (OIM) and unaffected wild type (WT) littermates were imaged using in vivo micro-computed tomography (microCT). Virtual endocast models were used to measure brain volume, and 3D landmarks were collected from the cranium and brain endocasts. Geometric morphometric analyses were used to compare brain shape and integration between the genotypes. OIM mice had increased brain volumes (relative to cranial centroid size) only at the juvenile stage. No significant difference was seen in cranial base angle (CBA) between OIM and WT mice. However, CBA was higher in juvenile than in adult OIM mice. Brain shape was significantly different between OIM and WT mice at both stages, with OIM mice having more globular brains than WT mice. Neurocranial and brain morphology were strongly integrated within both genotypes, while adult OIM mice tended to have lower levels of skull-brain integration than WT mice. These results suggest that neurocranial dysmorphologies in OI may be more severe at earlier stages of postnatal development. Decreased skull-brain integration in adult mice suggests that compensatory mechanisms may exist during postnatal growth to maintain neurological function despite significant changes in neurocranial morphology.


Assuntos
Osteogênese Imperfeita , Camundongos , Animais , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética , Microtomografia por Raio-X , Colágeno Tipo I , Crânio/diagnóstico por imagem , Fenótipo , Modelos Animais de Doenças , Osteogênese
4.
Neurobiol Learn Mem ; 206: 107865, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995804

RESUMO

Preclinical studies show that inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory in male and female adult and adolescent rodents. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g., dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To understand the mechanisms responsible for drug specific selectivity we began by investigating, in male mice, the pharmacokinetic differences in METH and COC brain exposure . Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, we next assessed transcriptional differences. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotropin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility. Pretreatment with AS2B prevented the ability of Blebb to disrupt an established METH-associated memory. Alternatively, combining CRF2 overexpression and agonist treatment, urocortin 3 (UCN3), in the BLA during conditioning rendered COC-associated memory susceptible to disruption by NMII inhibition, mimicking the Blebb-induced, retrieval-independent memory disruption seen with METH. These results suggest that BLA CRF2 receptor activation during memory formation in male mice can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption by NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Cocaína , Metanfetamina , Receptores de Hormônio Liberador da Corticotropina , Animais , Feminino , Masculino , Camundongos , Actinas , Complexo Nuclear Basolateral da Amígdala/metabolismo , Cocaína/farmacologia , Metanfetamina/farmacologia , Miosina Tipo II/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
5.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808765

RESUMO

Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The molecular and cellular mechanisms that shape SMI within circuits that promote cognition are poorly understood. Here, we demonstrate that expression of the autism/intellectual disability gene, Syngap1, in mouse cortical excitatory neurons promotes touch sensitivity required to elicit perceptual behaviors. Cortical Syngap1 expression enabled touch-induced feedback signals within sensorimotor loops by assembling circuits that support tactile sensitivity. These circuits also encoded correlates of attention that promoted self-generated whisker movements underlying purposeful and sustained object exploration. As Syngap1 deficient animals explored objects with whiskers, relatively weak touch signals were integrated with relatively strong motor signals. This produced a signal-to-noise deficit consistent with impaired tactile sensitivity, reduced tactile exploration, and weak tactile learning. Thus, Syngap1 expression in cortex promotes tactile perception by assembling circuits that integrate touch and whisker motor signals. Deficient Syngap1 expression likely contributes to cognitive impairment through abnormal top-down SMI.

6.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292925

RESUMO

Inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g. dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To investigate a potential source of this specificity, pharmacokinetic differences in METH and COC brain exposure were examined. Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, transcriptional differences were next assessed. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotrophin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility after METH conditioning. Pretreatment with AS2B occluded the ability of Blebb to disrupt an established METH-associated memory. Alternatively, the Blebb-induced, retrieval-independent memory disruption seen with METH was mimicked for COC when combined with CRF2 overexpression in the BLA and its ligand, UCN3 during conditioning. These results indicate that BLA CRF2 receptor activation during learning can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption via NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.

7.
Elife ; 112022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394425

RESUMO

Loss-of-function variants in SYNGAP1 cause a developmental encephalopathy defined by cognitive impairment, autistic features, and epilepsy. SYNGAP1 splicing leads to expression of distinct functional protein isoforms. Splicing imparts multiple cellular functions of SynGAP proteins through coding of distinct C-terminal motifs. However, it remains unknown how these different splice sequences function in vivo to regulate neuronal function and behavior. Reduced expression of SynGAP-α1/2 C-terminal splice variants in mice caused severe phenotypes, including reduced survival, impaired learning, and reduced seizure latency. In contrast, upregulation of α1/2 expression improved learning and increased seizure latency. Mice expressing α1-specific mutations, which disrupted SynGAP cellular functions without altering protein expression, promoted seizure, disrupted synapse plasticity, and impaired learning. These findings demonstrate that endogenous SynGAP isoforms with α1/2 spliced sequences promote cognitive function and impart seizure protection. Regulation of SynGAP-αexpression or function may be a viable therapeutic strategy to broadly improve cognitive function and mitigate seizure.


Assuntos
Convulsões , Proteínas Ativadoras de ras GTPase , Animais , Cognição , Camundongos , Mutação , Isoformas de Proteínas/genética , Convulsões/genética , Sinapses/fisiologia , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
8.
PLoS One ; 17(3): e0264981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275939

RESUMO

PURPOSE: Normative data on the growth and development of the upper airway across the sexes is needed for the diagnosis and treatment of congenital and acquired respiratory anomalies and to gain insight on developmental changes in speech acoustics and disorders with craniofacial anomalies. METHODS: The growth of the upper airway in children ages birth to 5 years, as compared to adults, was quantified using an imaging database with computed tomography studies from typically developing individuals. Methodological criteria for scan inclusion and airway measurements included: head position, histogram-based airway segmentation, anatomic landmark placement, and development of a semi-automatic centerline for data extraction. A comprehensive set of 2D and 3D supra- and sub-glottal measurements from the choanae to tracheal opening were obtained including: naso-oro-laryngo-pharynx subregion volume and length, each subregion's superior and inferior cross-sectional-area, and antero-posterior and transverse/width distances. RESULTS: Growth of the upper airway during the first 5 years of life was more pronounced in the vertical and transverse/lateral dimensions than in the antero-posterior dimension. By age 5 years, females have larger pharyngeal measurement than males. Prepubertal sex-differences were identified in the subglottal region. CONCLUSIONS: Our findings demonstrate the importance of studying the growth of the upper airway in 3D. As the lumen length increases, its shape changes, becoming increasingly elliptical during the first 5 years of life. This study also emphasizes the importance of methodological considerations for both image acquisition and data extraction, as well as the use of consistent anatomic structures in defining pharyngeal regions.


Assuntos
Imageamento Tridimensional , Laringe , Adulto , Pontos de Referência Anatômicos , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Faringe/diagnóstico por imagem
9.
ACS Chem Biol ; 16(11): 2164-2173, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34558887

RESUMO

Myosin IIs, actin-based motors that utilize the chemical energy of adenosine 5'-triphosphate (ATP) to generate force, have potential as therapeutic targets. Their heavy chains differentiate the family into muscle (skeletal [SkMII], cardiac, smooth) and nonmuscle myosin IIs. Despite the therapeutic potential for muscle disorders, SkMII-specific inhibitors have not been reported and characterized. Here, we present the discovery, synthesis, and characterization of "skeletostatins," novel derivatives of the pan-myosin II inhibitor blebbistatin, with selectivity 40- to 170-fold for SkMII over all other myosin II family members. In addition, the skeletostatins bear improved potency, solubility, and photostability, without cytotoxicity. Based on its optimal in vitro profile, MT-134's in vivo tolerability, efficacy, and pharmacokinetics were determined. MT-134 was well-tolerated in mice, impaired motor performance, and had excellent exposure in muscles. Skeletostatins are useful probes for basic research and a strong starting point for drug development.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/química , Miosina Tipo II/antagonistas & inibidores , Animais , Camundongos , Estrutura Molecular , Músculo Esquelético/metabolismo , Miosina Tipo II/metabolismo , Miosina Tipo II/toxicidade
10.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404727

RESUMO

A significant proportion of autism risk genes regulate synapse function, including plasticity, which is believed to contribute to behavioral abnormalities. However, it remains unclear how impaired synapse plasticity contributes to network-level processes linked to adaptive behaviors, such as experience-dependent ensemble plasticity. We found that Syngap1, a major autism risk gene, promoted measures of experience-dependent excitatory synapse strengthening in the mouse cortex, including spike-timing-dependent glutamatergic synaptic potentiation and presynaptic bouton formation. Synaptic depression and bouton elimination were normal in Syngap1 mice. Within cortical networks, Syngap1 promoted experience-dependent increases in somatic neural activity in weakly active neurons. In contrast, plastic changes to highly active neurons from the same ensemble that paradoxically weaken with experience were unaffected. Thus, experience-dependent excitatory synapse strengthening mediated by Syngap1 shapes neuron-specific plasticity within cortical ensembles. We propose that other genes regulate neuron-specific weakening within ensembles, and together, these processes function to redistribute activity within cortical networks during experience.


Assuntos
Transtorno Autístico/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Sinapses/fisiologia , Tato , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Córtex Cerebral/fisiologia , Epigênese Genética , Feminino , Humanos , Masculino , Camundongos , Técnicas de Patch-Clamp , Vibrissas , Proteínas Ativadoras de ras GTPase/genética
11.
Anat Rec (Hoboken) ; 304(9): 1901-1917, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33580633

RESUMO

The hyoid bone and the hyomandibular complex subserve the functions of respiration, deglutition, and speech. This study quantified the growth of the hyoid bone and the hyomandibular relationships in males and females from birth to 19 years. Using 97 computed tomography (CT) scans, from a previous study (Kelly et al., 2017) on mandibular growth from 49 individuals (16 with longitudinal scans), landmarks were placed on 3D CT models and used to calculate four distance, and three angular measurements. A general increase in growth trend was observed in hyoid bone linear measurements-length, width, and depth-as well as relational mandible-to-hyoid distance, throughout the developmental ages examined in both males and females, with most variables having larger measurements for females up to age 10 years. A general decrease in all three angular measurements was observed in both males and females up to approximately age 12 years, at which time male angular measurements gradually increased with significant sexual dimorphism emerging after age 15 years. As expected, postpubertal males had greater hyoid angle than females; they also had greater hyoid angle of inclination than mandible body inclination (with inclination relative to the anterior-posterior nasal plane), likely related to hyo-laryngeal descent. This study contributes to normative data on hyoid bone and hyomandibular relational growth in typically developing individuals and provides a baseline against which structural and functional influences on anatomic growth may be examined by clinical disciplines that address the aerodigestive and speech functions, as well as the fields of anatomy, forensics, and anthropology.


Assuntos
Osso Hioide , Caracteres Sexuais , Adolescente , Criança , Feminino , Humanos , Osso Hioide/diagnóstico por imagem , Masculino , Mandíbula/diagnóstico por imagem , Tomografia , Tomografia Computadorizada por Raios X
14.
Anat Rec (Hoboken) ; 304(8): 1692-1708, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33119940

RESUMO

Cervical vertebral bodies undergo substantial morphological development during the first two decades of life that are used clinically to visually determine skeletal maturation with the cervical vertebral maturation index (CVMI). CVMI defines six stages that capture the morphological transformations from 6 years to 18 years. However, CVMI has poor reproducibility given its qualitative nature and does not account for sexual dimorphism. This study aims to quantify the morphological development of the cervical vertebral bodies C2-C7 in size (height and depth) and shape and examine the emergence of sexual dimorphism. Using 115 (70 M;45F) computed tomography studies from typically developing individuals ages 6 months to 20 years, landmarks were placed at the margins of the C2-C7 cervical vertebral bodies in the midsagittal plane for size and shape analysis. Findings revealed a dichotomy in the growth trends of height versus depth. The C2-C7 growth in depth gained the majority of the adult size by age 5 years, while the C3-C7 growth in height displayed two periods of accelerated growth during early childhood and puberty. Significant sex differences were found in height and depth growth trends and the form-space ontogenetic trajectories during puberty, with minor but evident differences emerging at age 3 years. Female C2-C7 depth measures were smaller than males at all ages. However, sex differences in height became evident due to males continuing to grow after females reach maturity. Findings quantify the morphological developmental stages of CVMI and emphasize the need to account for sex differences when assessing skeletal maturation.


Assuntos
Vértebras Cervicais/crescimento & desenvolvimento , Caracteres Sexuais , Adolescente , Determinação da Idade pelo Esqueleto/métodos , Vértebras Cervicais/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Tomografia Computadorizada por Raios X , Adulto Jovem
15.
J Biol Methods ; 7(3): e136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204739

RESUMO

Cytokinesis is the last step of mitotic cell division that separates the cytoplasm of dividing cells. Small molecule inhibitors targeting either the elements of the regulatory pathways controlling cytokinesis, or the terminal effectors have been of interest as potential drug candidates for the treatment of various diseases. Here we present a detailed protocol for a cell-based cytokinesis assay that can be used for the discovery of novel cytokinesis inhibitors. The assay is performed in a 96-well plate format in 48 h. Living cells, nuclei and nuclei of dead cells are identified by a single staining step using three fluorescent dyes, followed by rapid live cell imaging. The primary signal is the nuclei-to-cell ratio (NCR). In the presence of cytokinesis inhibitors, this ratio increases over time, as the ratio of multinucleated cells increases in the population. The ratio of dead nuclei to total nuclei provides a simultaneous measure of cytotoxicity. A screening window coefficient (Z`) of 0.65 indicates that the assay is suitable for screening purposes, as the positive and negative controls are well-separated. EC50 values can be reliably determined in a single 96-well plate by using only six different compound concentrations, enabling the testing of 4 compounds per plate. An excellent test-retest reliability (R 2 = 0.998) was found for EC50 values covering a ~1500-fold range of potencies. Established small molecule inhibitors of cytokinesis operating via direct action on actin dynamics or nonmuscle myosin II are used to demonstrate the robustness, simplicity and flexibility of the assay.

16.
J Neurosci ; 40(41): 7980-7994, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32887745

RESUMO

SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. De novo loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communication disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glutamatergic transmission. However, studies to date have been limited to mouse and rat neurons. Therefore, it remains unknown how SYNGAP1 loss of function impacts the development and function of human neurons. To address this, we used CRISPR/Cas9 technology to ablate SYNGAP1 protein expression in neurons derived from a commercially available induced pluripotent stem cell line (hiPSC) obtained from a human female donor. Reducing SynGAP protein expression in developing hiPSC-derived neurons enhanced dendritic morphogenesis, leading to larger neurons compared with those derived from isogenic controls. Consistent with larger dendritic fields, we also observed a greater number of morphologically defined excitatory synapses in cultures containing these neurons. Moreover, neurons with reduced SynGAP protein had stronger excitatory synapses and expressed synaptic activity earlier in development. Finally, distributed network spiking activity appeared earlier, was substantially elevated, and exhibited greater bursting behavior in SYNGAP1 null neurons. We conclude that SYNGAP1 regulates the postmitotic maturation of human neurons made from hiPSCs, which influences how activity develops within nascent neural networks. Alterations to this fundamental neurodevelopmental process may contribute to the etiology of SYNGAP1-related disorders.SIGNIFICANCE STATEMENTSYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. While this gene is well studied in rodent neurons, its function in human neurons remains unknown. We used CRISPR/Cas9 technology to disrupt SYNGAP1 protein expression in neurons derived from an induced pluripotent stem cell line. We found that induced neurons lacking SynGAP expression exhibited accelerated dendritic morphogenesis, increased accumulation of postsynaptic markers, early expression of synapse activity, enhanced excitatory synaptic strength, and early onset of neural network activity. We conclude that SYNGAP1 regulates the postmitotic differentiation rate of developing human neurons and disrupting this process impacts the function of nascent neural networks. These altered developmental processes may contribute to the etiology of SYNGAP1 disorders.


Assuntos
Dendritos/fisiologia , Rede Nervosa/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Sinapses/fisiologia , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/fisiologia , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Tamanho Celular , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Deleção de Genes , Humanos , Transtornos do Neurodesenvolvimento/genética , Células-Tronco Pluripotentes
17.
Proc Biol Sci ; 287(1930): 20200449, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32635865

RESUMO

Predicting species' capacity to respond to climate change is an essential first step in developing effective conservation strategies. However, conservation prioritization schemes rarely take evolutionary potential into account. Ecotones provide important opportunities for diversifying selection and may thus constitute reservoirs of standing variation, increasing the capacity for future adaptation. Here, we map patterns of environmentally associated genomic and craniometric variation in the central African rodent Praomys misonnei to identify areas with the greatest turnover in genomic composition. We also project patterns of environmentally associated genomic variation under future climate change scenarios to determine where populations may be under the greatest pressure to adapt. While precipitation gradients influence both genomic and craniometric variation, vegetation structure is also an important determinant of craniometric variation. Areas of elevated environmentally associated genomic and craniometric variation overlap with zones of rapid ecological transition underlining their importance as reservoirs of evolutionary potential. We also find that populations in the Sanaga river basin, central Cameroon and coastal Gabon are likely to be under the greatest pressure from climate change. Lastly, we make specific conservation recommendations on how to protect zones of high evolutionary potential and identify areas where populations may be the most susceptible to climate change.


Assuntos
Mudança Climática , Murinae , Adaptação Fisiológica , Animais , Evolução Biológica , Ecossistema
18.
J Neurosci ; 40(13): 2695-2707, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32066582

RESUMO

Nonmuscle myosin II inhibition (NMIIi) in the basolateral amygdala (BLA), but not dorsal hippocampus (CA1), selectively disrupts memories associated with methamphetamine (METH) days after learning, without retrieval. However, the molecular mechanisms underlying this selective vulnerability remain poorly understood. A known function of NMII is to transiently activate synaptic actin dynamics with learning. Therefore, we hypothesized that METH-associated learning perpetuates NMII-driven actin dynamics in synapses, leading to an extended window of vulnerability for memory disruption. We used time-lapse two-photon imaging of dendritic spine motility in acutely prepared brain slices from female and male mice following METH-associated learning as a readout of actin-myosin dynamics. Spine motility was persistently increased in the BLA, but not in CA1. Consistent with the memory disrupting effect of intra-BLA NMII inhibition, METH-induced changes to BLA spine dynamics were reversed by a single systemic injection of an NMII inhibitor. Intra-CA1 NMII inhibition, on the other hand, did not disrupt METH-associated memory. Thus, we report identification of a previously unknown ability for spine actin dynamics to persist days after stimulation and that this is under the control of NMII. Further, these perpetual NMII-driven spine actin dynamics in BLA neurons may contribute to the unique susceptibility of METH-associated memories.SIGNIFICANCE STATEMENT There are no Food and Drug Administration-approved pharmacotherapies to prevent relapse to the use of stimulants, such as methamphetamine (METH). Environmental cues become associated with drug use, such that the memories can elicit strong motivation to seek the drug during abstinence. We previously reported that the storage of METH-associated memories is uniquely vulnerable to immediate, retrieval-independent, and lasting disruption by direct actin depolymerization or by inhibiting the actin driver nonmuscle myosin II (NMII) in the BLA or systemically. Here we report a potential structural mechanism responsible for the unique vulnerability of METH-associated memories and METH-seeking behavior to NMII inhibition within the BLA.


Assuntos
Aprendizagem por Associação/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Espinhas Dendríticas/metabolismo , Metanfetamina/farmacologia , Neurônios/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Feminino , Masculino , Camundongos , Neurônios/efeitos dos fármacos
20.
Mol Psychiatry ; 25(5): 965-976, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31142820

RESUMO

Disruption of persistent, stress-associated memories is relevant for treating posttraumatic stress disorder (PTSD) and related syndromes, which develop in a subset of individuals following a traumatic event. We previously developed a stress-enhanced fear learning (SEFL) paradigm in inbred mice that produces PTSD-like characteristics in a subset of mice, including persistently enhanced memory and heightened cFos in the basolateral amygdala complex (BLC) with retrieval of the remote (30-day-old) stress memory. Here, the contribution of BLC microRNAs (miRNAs) to stress-enhanced memory was investigated because of the molecular complexity they achieve through their ability to regulate multiple targets simultaneously. We performed small-RNA sequencing (smRNA-Seq) and quantitative proteomics on BLC tissue collected from mice 1 month after SEFL and identified persistently changed microRNAs, including mir-135b-5p, and proteins associated with PTSD-like heightened fear expression. Viral-mediated overexpression of mir-135b-5p in the BLC of stress-resilient animals enhanced remote fear memory expression and promoted spontaneous renewal 14 days after extinction. Conversely, inhibition of BLC mir-135b-5p in stress-susceptible animals had the opposite effect, promoting a resilient-like phenotype. mir-135b-5p is highly conserved across mammals and was detected in post mortem human amygdala, as well as human serum samples. The mir-135b passenger strand, mir-135b-3p, was significantly elevated in serum from PTSD military veterans, relative to combat-exposed control subjects. Thus, miR-135b-5p may be an important therapeutic target for dampening persistent, stress-enhanced memory and its passenger strand a potential biomarker for responsivity to a mir-135-based therapeutic.


Assuntos
Medo/fisiologia , Memória/fisiologia , MicroRNAs/genética , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Feminino , Humanos , Masculino , Camundongos , MicroRNAs/análise , MicroRNAs/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...