Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38729151

RESUMO

The property of mixed selectivity has been discussed at a computational level and offers a strategy to maximize computational power by adding versatility to the functional role of each neuron. Here, we offer a biologically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be obtained in simple neural circuits. Neurons that respond to multiple, statistically independent variables display mixed selectivity. If their activity can be expressed as a weighted sum, then they exhibit linear mixed selectivity; otherwise, they exhibit nonlinear mixed selectivity. Neural representations based on diverse nonlinear mixed selectivity are high dimensional; hence, they confer enormous flexibility to a simple downstream readout neural circuit. However, a simple neural circuit cannot possibly encode all possible mixtures of variables simultaneously, as this would require a combinatorially large number of mixed selectivity neurons. Gating mechanisms like oscillations and neuromodulation can solve this problem by dynamically selecting which variables are mixed and transmitted to the readout.

2.
Proc Natl Acad Sci U S A ; 121(22): e2402732121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768339

RESUMO

Ketamine is an N-methyl-D-aspartate (NMDA)-receptor antagonist that produces sedation, analgesia, and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1 to 4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and nonhuman primate local field potential recordings. We have identified how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.


Assuntos
Ketamina , Receptores de N-Metil-D-Aspartato , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Humanos , Cinética , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Modelos Neurológicos
3.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562734

RESUMO

Many different anesthetics cause loss of responsiveness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examined how ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, and dexmedetomidine, an α2 adrenergic receptor agonist, affected neural oscillations in the prefrontal cortex of nonhuman primates. Previous work has shown that anesthesia increases phase locking of low-frequency local field potential activity across cortex. We observed similar increases with anesthetic doses of ketamine and dexmedetomidine in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varied between regions. We found that oscillatory activity in different prefrontal subregions within each hemisphere became more anti-phase with both drugs. Local analyses within a region suggested that this finding could be explained by broad cortical distance-based effects, such as a large traveling wave. By contrast, homologous areas across hemispheres increased their phase alignment. Our results suggest that the drugs induce strong patterns of cortical phase alignment that are markedly different from those in the awake state, and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.

4.
Trends Cogn Sci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38658218

RESUMO

Beta oscillations are linked to the control of goal-directed processing of sensory information and the timing of motor output. Recent evidence demonstrates they are not sustained but organized into intermittent high-power bursts mediating timely functional inhibition. This implies there is a considerable moment-to-moment variation in the neural dynamics supporting cognition. Beta bursts thus offer new opportunities for studying how sensory inputs are selectively processed, reshaped by inhibitory cognitive operations and ultimately result in motor actions. Recent method advances reveal diversity in beta bursts that provide deeper insights into their function and the underlying neural circuit activity motifs. We propose that brain-wide, spatiotemporal patterns of beta bursting reflect various cognitive operations and that their dynamics reveal nonlinear aspects of cortical processing.

5.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617266

RESUMO

Ketamine is an NMDA-receptor antagonist that produces sedation, analgesia and dissociation at low doses and profound unconsciousness with antinociception at high doses. At high and low doses, ketamine can generate gamma oscillations (>25 Hz) in the electroencephalogram (EEG). The gamma oscillations are interrupted by slow-delta oscillations (0.1-4 Hz) at high doses. Ketamine's primary molecular targets and its oscillatory dynamics have been characterized. However, how the actions of ketamine at the subcellular level give rise to the oscillatory dynamics observed at the network level remains unknown. By developing a biophysical model of cortical circuits, we demonstrate how NMDA-receptor antagonism by ketamine can produce the oscillatory dynamics observed in human EEG recordings and non-human primate local field potential recordings. We have discovered how impaired NMDA-receptor kinetics can cause disinhibition in neuronal circuits and how a disinhibited interaction between NMDA-receptor-mediated excitation and GABA-receptor-mediated inhibition can produce gamma oscillations at high and low doses, and slow-delta oscillations at high doses. Our work uncovers general mechanisms for generating oscillatory brain dynamics that differs from ones previously reported, and provides important insights into ketamine's mechanisms of action as an anesthetic and as a therapy for treatment-resistant depression.

6.
Nat Neurosci ; 27(3): 547-560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238431

RESUMO

The mammalian cerebral cortex is anatomically organized into a six-layer motif. It is currently unknown whether a corresponding laminar motif of neuronal activity patterns exists across the cortex. Here we report such a motif in the power of local field potentials (LFPs). Using laminar probes, we recorded LFPs from 14 cortical areas across the cortical hierarchy in five macaque monkeys. The laminar locations of recordings were histologically identified by electrolytic lesions. Across all areas, we found a ubiquitous spectrolaminar pattern characterized by an increasing deep-to-superficial layer gradient of high-frequency power peaking in layers 2/3 and an increasing superficial-to-deep gradient of alpha-beta power peaking in layers 5/6. Laminar recordings from additional species showed that the spectrolaminar pattern is highly preserved among primates-macaque, marmoset and human-but more dissimilar in mouse. Our results suggest the existence of a canonical layer-based and frequency-based mechanism for cortical computation.


Assuntos
Córtex Cerebral , Macaca , Humanos , Animais , Camundongos , Neurônios/fisiologia , Mamíferos
7.
J Cogn Neurosci ; 36(2): 394-413, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902596

RESUMO

A critical component of anesthesia is the loss of sensory perception. Propofol is the most widely used drug for general anesthesia, but the neural mechanisms of how and when it disrupts sensory processing are not fully understood. We analyzed local field potential and spiking recorded from Utah arrays in auditory cortex, associative cortex, and cognitive cortex of nonhuman primates before and during propofol-mediated unconsciousness. Sensory stimuli elicited robust and decodable stimulus responses and triggered periods of stimulus-related synchronization between brain areas in the local field potential of Awake animals. By contrast, propofol-mediated unconsciousness eliminated stimulus-related synchrony and drastically weakened stimulus responses and information in all brain areas except for auditory cortex, where responses and information persisted. However, we found stimuli occurring during spiking Up states triggered weaker spiking responses than in Awake animals in auditory cortex, and little or no spiking responses in higher order areas. These results suggest that propofol's effect on sensory processing is not just because of asynchronous Down states. Rather, both Down states and Up states reflect disrupted dynamics.


Assuntos
Córtex Auditivo , Propofol , Animais , Propofol/farmacologia , Inconsciência/induzido quimicamente , Encéfalo/fisiologia , Anestesia Geral , Córtex Auditivo/fisiologia
8.
PNAS Nexus ; 2(10): pgad293, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37920551

RESUMO

Research in human volunteers and surgical patients has shown that unconsciousness under general anesthesia can be reliably tracked using real-time electroencephalogram processing. Hence, a closed-loop anesthesia delivery (CLAD) system that maintains precisely specified levels of unconsciousness is feasible and would greatly aid intraoperative patient management. The US Federal Drug Administration has approved no CLAD system for human use due partly to a lack of testing in appropriate animal models. To address this key roadblock, we implement a nonhuman primate (NHP) CLAD system that controls the level of unconsciousness using the anesthetic propofol. The key system components are a local field potential (LFP) recording system; propofol pharmacokinetics and pharmacodynamic models; the control variable (LFP power between 20 and 30 Hz), a programmable infusion system and a linear quadratic integral controller. Our CLAD system accurately controlled the level of unconsciousness along two different 125-min dynamic target trajectories for 18 h and 45 min in nine experiments in two NHPs. System performance measures were comparable or superior to those in previous CLAD reports. We demonstrate that an NHP CLAD system can reliably and accurately control in real-time unconsciousness maintained by anesthesia. Our findings establish critical steps for CLAD systems' design and testing prior to human testing.

10.
Sci Adv ; 9(40): eadh0974, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801492

RESUMO

Recording and modulating neural activity in vivo enables investigations of the neurophysiology underlying behavior and disease. However, there is a dearth of translational tools for simultaneous recording and localized receptor-specific modulation. We address this limitation by translating multifunctional fiber neurotechnology previously only available for rodent studies to enable cortical and subcortical neural recording and modulation in macaques. We record single-neuron and broader oscillatory activity during intracranial GABA infusions in the premotor cortex and putamen. By applying state-space models to characterize changes in electrophysiology, we uncover that neural activity evoked by a working memory task is reshaped by even a modest local inhibition. The recordings provide detailed insight into the electrophysiological effect of neurotransmitter receptor modulation in both cortical and subcortical structures in an awake macaque. Our results demonstrate a first-time application of multifunctional fibers for causal studies of neuronal activity in behaving nonhuman primates and pave the way for clinical translation of fiber-based neurotechnology.


Assuntos
Neurofisiologia , Vigília , Animais , Neurofisiologia/métodos , Macaca mulatta , Encéfalo/fisiologia , Cognição
11.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732234

RESUMO

Predictive coding is a fundamental function of the cortex. The predictive routing model proposes a neurophysiological implementation for predictive coding. Predictions are fed back from deep-layer cortex via alpha/beta (8-30Hz) oscillations. They inhibit the gamma (40-100Hz) and spiking that feed sensory inputs forward. Unpredicted inputs arrive in circuits unprepared by alpha/beta, resulting in enhanced gamma and spiking. To test the predictive routing model and its role in consciousness, we collected data from intracranial recordings of macaque monkeys during passive presentation of auditory oddballs (e.g., AAAAB) before and after propofol-mediated loss of consciousness (LOC). In line with the predictive routing model, alpha/beta oscillations in the awake state served to inhibit the processing of predictable stimuli. Propofol-mediated LOC eliminated alpha/beta modulation by a predictable stimulus in sensory cortex and alpha/beta coherence between sensory and frontal areas. As a result, oddball stimuli evoked enhanced gamma power, late (> 200 ms from stimulus onset) period spiking, and superficial layer sinks in sensory cortex. Therefore, auditory cortex was in a disinhibited state during propofol-mediated LOC. However, despite these enhanced feedforward responses in auditory cortex, there was a loss of differential spiking to oddballs in higher order cortex. This may be a consequence of a loss of within-area and inter-area spike-field coupling in the alpha/beta and gamma frequency bands. These results provide strong constraints for current theories of consciousness. Significance statement: Neurophysiology studies have found alpha/beta oscillations (8-30Hz), gamma oscillations (40-100Hz), and spiking activity during cognition. Alpha/beta power has an inverse relationship with gamma power/spiking. This inverse relationship suggests that gamma/spiking are under the inhibitory control of alpha/beta. The predictive routing model hypothesizes that alpha/beta oscillations selectively inhibit (and thereby control) cortical activity that is predictable. We tested whether this inhibitory control is a signature of consciousness. We used multi-area neurophysiology recordings in monkeys presented with tone sequences that varied in predictability. We recorded brain activity as the anesthetic propofol was administered to manipulate consciousness. Compared to conscious processing, propofol-mediated unconsciousness disrupted alpha/beta inhibitory control during predictive processing. This led to a disinhibition of gamma/spiking, consistent with the predictive routing model.

12.
bioRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577637

RESUMO

Distinct dynamics in different cortical layers are apparent in neuronal and local field potential (LFP) patterns, yet their associations in the context of laminar processing have been sparingly analyzed. Here, we study the laminar organization of spike-field causal flow within and across visual (V4) and frontal areas (PFC) of monkeys performing a visual task. Using an event-based quantification of LFPs and a directed information estimator, we found area and frequency specificity in the laminar organization of spike-field causal connectivity. Gamma bursts (40-80 Hz) in the superficial layers of V4 largely drove intralaminar spiking. These gamma influences also fed forward up the cortical hierarchy to modulate laminar spiking in PFC. In PFC, the direction of intralaminar information flow was from spikes → fields where these influences dually controlled top-down and bottom-up processing. Our results, enabled by innovative methodologies, emphasize the complexities of spike-field causal interactions amongst multiple brain areas and behavior.

13.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425684

RESUMO

A critical component of anesthesia is the loss sensory perception. Propofol is the most widely used drug for general anesthesia, but the neural mechanisms of how and when it disrupts sensory processing are not fully understood. We analyzed local field potential (LFP) and spiking recorded from Utah arrays in auditory cortex, associative cortex, and cognitive cortex of non-human primates before and during propofol mediated unconsciousness. Sensory stimuli elicited robust and decodable stimulus responses and triggered periods of stimulus-induced coherence between brain areas in the LFP of awake animals. By contrast, propofol mediated unconsciousness eliminated stimulus-induced coherence and drastically weakened stimulus responses and information in all brain areas except for auditory cortex, where responses and information persisted. However, we found stimuli occurring during spiking Up states triggered weaker spiking responses than in awake animals in auditory cortex, and little or no spiking responses in higher order areas. These results suggest that propofol's effect on sensory processing is not just due to asynchronous down states. Rather, both Down states and Up states reflect disrupted dynamics.

14.
Cereb Cortex ; 33(17): 9877-9895, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37420330

RESUMO

It is increasingly clear that memories are distributed across multiple brain areas. Such "engram complexes" are important features of memory formation and consolidation. Here, we test the hypothesis that engram complexes are formed in part by bioelectric fields that sculpt and guide the neural activity and tie together the areas that participate in engram complexes. Like the conductor of an orchestra, the fields influence each musician or neuron and orchestrate the output, the symphony. Our results use the theory of synergetics, machine learning, and data from a spatial delayed saccade task and provide evidence for in vivo ephaptic coupling in memory representations.


Assuntos
Consolidação da Memória , Neurônios , Neurônios/fisiologia , Encéfalo/fisiologia
15.
Prog Neurobiol ; 226: 102465, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37210066

RESUMO

We propose and present converging evidence for the Cytoelectric Coupling Hypothesis: Electric fields generated by neurons are causal down to the level of the cytoskeleton. This could be achieved via electrodiffusion and mechanotransduction and exchanges between electrical, potential and chemical energy. Ephaptic coupling organizes neural activity, forming neural ensembles at the macroscale level. This information propagates to the neuron level, affecting spiking, and down to molecular level to stabilize the cytoskeleton, "tuning" it to process information more efficiently.


Assuntos
Mecanotransdução Celular , Neurônios , Humanos , Neurônios/fisiologia , Encéfalo/fisiologia
16.
Nat Commun ; 14(1): 1429, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918567

RESUMO

Working memory (WM) allows us to remember and selectively control a limited set of items. Neural evidence suggests it is achieved by interactions between bursts of beta and gamma oscillations. However, it is not clear how oscillations, reflecting coherent activity of millions of neurons, can selectively control individual WM items. Here we propose the novel concept of spatial computing where beta and gamma interactions cause item-specific activity to flow spatially across the network during a task. This way, control-related information such as item order is stored in the spatial activity independent of the detailed recurrent connectivity supporting the item-specific activity itself. The spatial flow is in turn reflected in low-dimensional activity shared by many neurons. We verify these predictions by analyzing local field potentials and neuronal spiking. We hypothesize that spatial computing can facilitate generalization and zero-shot learning by utilizing spatial component as an additional information encoding dimension.


Assuntos
Memória de Curto Prazo , Rememoração Mental , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia
17.
Neuroimage ; 270: 119938, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775081

RESUMO

Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.


Assuntos
Macaca , Neurônios , Animais , Neurônios/fisiologia , Fenômenos Eletrofisiológicos
18.
PLoS Comput Biol ; 18(12): e1010776, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574424

RESUMO

Working memory has long been thought to arise from sustained spiking/attractor dynamics. However, recent work has suggested that short-term synaptic plasticity (STSP) may help maintain attractor states over gaps in time with little or no spiking. To determine if STSP endows additional functional advantages, we trained artificial recurrent neural networks (RNNs) with and without STSP to perform an object working memory task. We found that RNNs with and without STSP were able to maintain memories despite distractors presented in the middle of the memory delay. However, RNNs with STSP showed activity that was similar to that seen in the cortex of a non-human primate (NHP) performing the same task. By contrast, RNNs without STSP showed activity that was less brain-like. Further, RNNs with STSP were more robust to network degradation than RNNs without STSP. These results show that STSP can not only help maintain working memories, it also makes neural networks more robust and brain-like.


Assuntos
Encéfalo , Memória de Curto Prazo , Animais , Redes Neurais de Computação , Primatas , Plasticidade Neuronal
19.
J Cogn Neurosci ; 35(1): 17-23, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322832

RESUMO

Working memory is where thoughts are held and manipulated. For many years, the dominant model was that working memory relied on steady-state neural dynamics. A neural representation was activated and then held in that state. However, as often happens, the more we examine working memory (especially with new technology), the more complex it looks. Recent discoveries show that working memory involves multiple mechanisms, including discontinuous bouts of spiking. Memories are also dynamic, evolving in a task-dependent manner. Cortical rhythms may control those dynamics, thereby endowing top-down "executive" control over our thoughts.


Assuntos
Função Executiva , Memória de Curto Prazo , Humanos
20.
Sci Rep ; 12(1): 15050, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064880

RESUMO

Working memories have long been thought to be maintained by persistent spiking. However, mounting evidence from multiple-electrode recording (and single-trial analyses) shows that the underlying spiking is better characterized by intermittent bursts of activity. A counterargument suggested this intermittent activity is at odds with observations that spike-time variability reduces during task performance. However, this counterargument rests on assumptions, such as randomness in the timing of the bursts, which may not be correct. Thus, we analyzed spiking and LFPs from monkeys' prefrontal cortex (PFC) to determine if task-related reductions in variability can co-exist with intermittent spiking. We found that it does because both spiking and associated gamma bursts were task-modulated, not random. In fact, the task-related reduction in spike variability could largely be explained by a related reduction in gamma burst variability. Our results provide further support for the intermittent activity models of working memory as well as novel mechanistic insights into how spike variability is reduced during cognitive tasks.


Assuntos
Memória de Curto Prazo , Córtex Pré-Frontal , Potenciais de Ação , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...