Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 307(8): 2858-2874, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38311971

RESUMO

We examined the ultrastructure of the mammalian os penis at the high-resolution synchrotron level. Previously, bacular microanatomy had only been investigated histologically. We studied the baculum of the harp seal (Pagophilus groenlandicus), in which the baculum varies more in size and shape than does a mechanically constrained bone (humerus). We (1) investigated the microarchitecture of bacula and humeri from the same seal specimens, and (2) described changes in bone micro- and macro-morphology associated with age (n = 15, age range = 1-35 years) and bone type. We analyzed cross-sectional geometry non-destructively through laboratory micro-computed tomography. We suggest that the midshaft may resist axial compression while the proximal region may resist torsion, based on measurements of cross-sectional and cortical areas, perimeter, ratio of maximum and minimum moments of inertia, and polar moment of inertia. In addition, midshaft bacula may be less mechanosensitive than humeri, based on microstructural variables (e.g., volume, surface area, diameter associated with lacunae and cortical porosity) analyzed across age groupings. Our findings related to the microarchitecture of the pinniped baculum provide a basis for further studies on development, mechanical properties, functions, and adaptations in this and other pinniped species. Our use of a multi-modal imaging approach was minimally destructive for reproducible and accurate comparison of three-dimensional bone ultrastructure. Such methods, coupled with multidisciplinary analyses, enable diverse studies of bone biology, life history, and evolution using museum collections.


Assuntos
Imageamento Tridimensional , Pênis , Focas Verdadeiras , Síncrotrons , Microtomografia por Raio-X , Animais , Microtomografia por Raio-X/métodos , Masculino , Imageamento Tridimensional/métodos , Focas Verdadeiras/anatomia & histologia , Pênis/diagnóstico por imagem , Pênis/anatomia & histologia
2.
Evolution ; 70(8): 1734-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27345722

RESUMO

Most birds vocalize with an open beak, but vocalization with a closed beak into an inflating cavity occurs in territorial or courtship displays in disparate species throughout birds. Closed-mouth vocalizations generate resonance conditions that favor low-frequency sounds. By contrast, open-mouth vocalizations cover a wider frequency range. Here we describe closed-mouth vocalizations of birds from functional and morphological perspectives and assess the distribution of closed-mouth vocalizations in birds and related outgroups. Ancestral-state optimizations of body size and vocal behavior indicate that closed-mouth vocalizations are unlikely to be ancestral in birds and have evolved independently at least 16 times within Aves, predominantly in large-bodied lineages. Closed-mouth vocalizations are rare in the small-bodied passerines. In light of these results and body size trends in nonavian dinosaurs, we suggest that the capacity for closed-mouth vocalization was present in at least some extinct nonavian dinosaurs. As in birds, this behavior may have been limited to sexually selected vocal displays, and hence would have co-occurred with open-mouthed vocalizations.


Assuntos
Evolução Biológica , Aves/fisiologia , Vocalização Animal , Acústica , Animais , Masculino , Filogenia
3.
Artigo em Inglês | MEDLINE | ID: mdl-19049825

RESUMO

The metabolic rate of harp (Pagophilus groenlandicus), harbor (Phoca vitulina), and ringed seals (Pusa hispida) was measured at various temperatures in air and water to estimate basal metabolic rates (BMRs) in these species. The basal rate and body composition of three harp seals were also measured throughout the year to examine the extent to which they vary seasonally. Marine mammalian carnivores generally have BMRs that are over three times the rates expected from body mass in mammals generally, both as a response to a cold-water distribution and to carnivorous food habits with the basal rates of terrestrial carnivores averaging about 1.8 times the mean of mammals. Phocid seals, however, have basal rates of metabolism that are 30% lower than other marine carnivores. Captive seals undergo profound changes in body mass and food consumption throughout the year, and after accounting for changes in body mass, the lowest rate of food intake occurs in summer. Contrary to earlier observations, harp seals also have lower basal rates during summer than during winter, but the variation in BMR, relative to mass expectations, was not associated with changes in the size of fat deposits. The summer reduction in energy expenditure and food consumption correlated with a reduction in BMR. That is, changes in BMR account for a significant portion of the seasonal variation in energy expenditure in the harp seal. Changes in body mass of harp seals throughout the year were due not only to changes in the size of body fat deposits, but also to changes in lean body mass. These results suggest that bioenergetics models used to predict prey consumption by seals should include time-variant energy requirements.


Assuntos
Metabolismo Energético , Focas Verdadeiras/metabolismo , Estações do Ano , Ar , Animais , Ingestão de Energia , Reprodutibilidade dos Testes , Especificidade da Espécie , Temperatura , Água
4.
Evolution ; 28(3): 473-476, 1974 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28564845
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA