Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 118(6): 744-764, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385554

RESUMO

Coxiella burnetii is the causative agent of Q fever. All C. burnetii isolates encode either an autonomously replicating plasmid (QpH1, QpDG, QpRS, or QpDV) or QpRS-like chromosomally integrated plasmid sequences. The role of the ORFs present in these sequences is unknown. Here, the role of the ORFs encoded on QpH1 was investigated. Using a new C. burnetii shuttle vector (pB-TyrB-QpH1ori), we cured the C. burnetii Nine Mile Phase II strain of QpH1. The ΔQpH1 strain grew normally in axenic media but had a significant growth defect in Vero cells, indicating QpH1 was important for C. burnetii virulence. We developed an inducible CRISPR interference system to examine the role of individual QpH1 plasmid genes. CRISPRi of cbuA0027 resulted in significant growth defects in axenic media and THP-1 cells. The cbuA0028/cbuA0027 operon encodes CBUA0028 (ToxP) and CBUA0027 (AntitoxP), which are homologous to the HigB2 toxin and HigA2 antitoxin, respectively, from Vibrio cholerae. Consistent with toxin-antitoxin systems, overexpression of toxP resulted in a severe intracellular growth defect that was rescued by co-expression of antitoxP. ToxP inhibited protein translation. AntitoxP bound the toxP promoter (PtoxP) and ToxP, with the resulting complex binding also PtoxP. In summary, our data indicate that C. burnetii maintains an autonomously replicating plasmid because of a plasmid-based toxin-antitoxin system.


Assuntos
Coxiella burnetii , Sistemas Toxina-Antitoxina , Animais , Chlorocebus aethiops , Coxiella burnetii/genética , Coxiella burnetii/metabolismo , Sistemas Toxina-Antitoxina/genética , Células Vero , Plasmídeos/genética , Virulência
2.
Methods Mol Biol ; 2136: 367-375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32430837

RESUMO

Group A Streptococcus (GAS) produces the pore-forming toxin, streptolysin O (SLO). SLO sequesters cholesterol and induces a plasma membrane repair process that removes the pores via a lipid raft-mediated endocytosis. The impact SLO has on membranes makes it an effective toxin for investigating the function of lipid rafts in cellular processes. Lipid rafts are essential for B-cell activation. Indeed, antigen-stimulated B-cell receptors (BCRs) require localization with lipid rafts for efficient signaling and internalization. SLO treatment impairs BCR activation by competing for lipid rafts. Here, disrupting lipid rafts using SLO and assessing the effects on BCR activation by fluorescence microscopy and flow cytometry are described.


Assuntos
Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/fisiologia , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Membrana Celular/metabolismo , Colesterol/metabolismo , Endocitose , Ativação Linfocitária , Microdomínios da Membrana/efeitos dos fármacos , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/fisiologia , Streptococcus pyogenes/metabolismo , Estreptolisinas/farmacologia
3.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405956

RESUMO

Coxiella burnetii is an intracellular bacterium that causes query, or Q fever, a disease that typically manifests as a severe flu-like illness. The initial target of C. burnetii is the alveolar macrophage. Here, it regulates vesicle trafficking pathways and fusion events to establish a large replication vacuole called the Coxiella-containing vacuole (CCV). Similar to a phagolysosome, the CCV has an acidic pH and contains lysosomal hydrolases obtained via fusion with late endocytic vesicles. Lysosomal hydrolases break down various lipids, carbohydrates, and proteins; thus, it is assumed C. burnetii derives nutrients for growth from these degradation products. To investigate this possibility, we utilized a GNPTAB-/- HeLa cell line that lacks lysosomal hydrolases in endocytic compartments. Unexpectedly, examination of C. burnetii growth in GNPTAB-/- HeLa cells revealed replication and viability are not impaired, indicating C. burnetii does not require by-products of hydrolase degradation to survive and grow in the CCV. However, although bacterial growth was normal, CCVs were abnormal, appearing dark and condensed rather than clear and spacious. Lack of degradation within CCVs allowed waste products to accumulate, including intraluminal vesicles, autophagy protein LC3, and cholesterol. The build-up of waste products coincided with an altered CCV membrane, where LAMP1 was decreased and CD63 and LAMP1 redistributed from a punctate to uniform localization. This disruption of CCV membrane organization may account for the decreased CCV size due to impaired fusion with late endocytic vesicles. Collectively, these results demonstrate lysosomal hydrolases are not required for C. burnetii survival and growth but are needed for normal CCV development. These data provide insight into mechanisms of CCV biogenesis while raising the important question of how C. burnetii obtains essential nutrients from its host.


Assuntos
Hidrolases/metabolismo , Aminoácidos/administração & dosagem , Aminoácidos/farmacologia , Catepsina D , Proliferação de Células , Colesterol/metabolismo , Coxiella burnetii , Meios de Cultura , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lisossomos , Macrolídeos/farmacologia , Viabilidade Microbiana
4.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30745369

RESUMO

Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/citologia , Coxiella burnetii/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Animais , Chlorocebus aethiops , Coxiella burnetii/genética , Citoplasma/microbiologia , Células Epiteliais/microbiologia , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Proteômica , Fator sigma/deficiência , Células THP-1 , Células Vero
5.
J Evid Inf Soc Work ; 15(4): 420-431, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29764317

RESUMO

GenerateHope (GH) is a San Diego-based 501c3 nonprofit organization providing fully integrated, comprehensive rehabilitation services to adult female survivors of sex trafficking. While best practices for working with survivors of sex trafficking are slowly emerging, to date, there have been few publications on this subject and little data on either short- or long-term outcomes from the many and varied programs nationwide. This paper examines the GH residential program and provides early outcome results for residents living at the GH program between six and 12 months. GH has integrated the types of assistance requested by sex-trafficking victims with clinical insights into trauma therapy, in turn establishing a live-in residence with a 30-hour per week schedule that includes academics, psychotherapy, and adjunct therapies. In this study, GH used three assessments to measure improvements in residents' overall well-being: Hamilton Depression Rating Scale (HAM-D), Post-Traumatic Stress Disorder (PTSD) Checklist - Civilian Version (PCL-C), and Rosenberg Self-Esteem Scale (RSES). Analysis of the three assessments showed dramatic improvements in the overall participant well-being: Symptoms of depression and post-traumatic stress disorder (PTSD) decreased significantly, and self-esteem improved significantly. Findings suggest a program that is replicable, scalable, and transferable to other settings and geographies. This paper also describes ongoing challenges in program implementation and highlights areas where further research is needed.


Assuntos
Tráfico de Pessoas/psicologia , Saúde Mental , Serviço Social/organização & administração , Depressão/epidemiologia , Depressão/terapia , Educação/organização & administração , Feminino , Humanos , Trauma Psicológico/epidemiologia , Trauma Psicológico/terapia , Psicoterapia/métodos , Reprodutibilidade dos Testes , Serviço Social/normas , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/terapia , Inquéritos e Questionários/normas , Sobreviventes
6.
BMC Microbiol ; 18(1): 33, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661138

RESUMO

BACKGROUND: Many gram-negative bacteria produce an outer membrane phospholipase A (PldA) that plays an important role in outer membrane function and is associated with virulence. RESULTS: In the current study, we characterized a pldA mutant of Coxiella burnetii, an intracellular gram-negative pathogen and the agent of human Q fever. The C. burnetti pldA open reading frame directs synthesis of a protein with conserved PldA active site residues. A C. burnetii ΔpldA deletion mutant had a significant growth defect in THP-1 macrophages, but not axenic medium, that was rescued by complementation. Thin layer chromatography was employed to assess whether pldA plays a role in remodeling membrane lipids during C. burnetii morphological differentiation. Extracted lipids were analyzed from replicating, logarithmic phase large cell variants (LCVs), non-replicating, stationary phase small cell variants (SCVs), and a mixture of LCVs and SCVs. Similar to Escherichia coli, all three forms contained cardiolipin (CL), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). However, PE and PG were present in lower quantities in the SCV while three additional lipid species were present in higher quantities. Co-migration with standards tentatively identified two of the three SCV-enriched lipids as lyso-phosphatidylethanolamine, a breakdown product of PE, and free fatty acids, which are generally toxic to bacteria. Developmental form lipid modifications required the activity of PldA. CONCLUSIONS: Collectively, these results indicate developmentally-regulated lipid synthesis by C. burnetii contributes to colonization of macrophages and may contribute to the environmental stability and the distinct biological properties of the SCV.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Coxiella burnetii/enzimologia , Coxiella burnetii/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Lipídeos de Membrana/metabolismo , Fosfolipases A1/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Citoplasma/microbiologia , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Genes Bacterianos/genética , Humanos , Fases de Leitura Aberta/genética , Fosfolipases A1/genética , Febre Q/microbiologia , Deleção de Sequência , Células THP-1 , Fatores de Virulência/metabolismo
7.
PLoS Pathog ; 14(4): e1007005, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29668757

RESUMO

Coxiella burnetii is an intracellular bacterium that replicates within an expansive phagolysosome-like vacuole. Fusion between the Coxiella-containing vacuole (CCV) and late endosomes/multivesicular bodies requires Rab7, the HOPS tethering complex, and SNARE proteins, with actin also speculated to play a role. Here, we investigated the importance of actin in CCV fusion. Filamentous actin patches formed around the CCV membrane that were preferred sites of vesicular fusion. Accordingly, the mediators of endolysosomal fusion Rab7, VAMP7, and syntaxin 8 were concentrated in CCV actin patches. Generation of actin patches required C. burnetii type 4B secretion and host retromer function. Patches decorated with VPS29 and VPS35, components of the retromer, FAM21 and WASH, members of the WASH complex that engage the retromer, and Arp3, a component of the Arp2/3 complex that generates branched actin filaments. Depletion by siRNA of VPS35 or VPS29 reduced CCV actin patches and caused Rab7 to uniformly distribute in the CCV membrane. C. burnetii grew normally in VPS35 or VPS29 depleted cells, as well as WASH-knockout mouse embryo fibroblasts, where CCVs are devoid of actin patches. Endosome recycling to the plasma membrane and trans-Golgi of glucose transporter 1 (GLUT1) and cationic-independent mannose-6-phosphate receptor (CI-M6PR), respectively, was normal in infected cells. However, siRNA knockdown of retromer resulted in aberrant trafficking of GLUT1, but not CI-M6PR, suggesting canonical retrograde trafficking is unaffected by retromer disruption. Treatment with the specific Arp2/3 inhibitor CK-666 strongly inhibited CCV formation, an effect associated with altered endosomal trafficking of transferrin receptor. Collectively, our results show that CCV actin patches generated by retromer, WASH, and Arp2/3 are dispensable for CCV biogenesis and stability. However, Arp2/3-mediated production of actin filaments required for cargo transport within the endosomal system is required for CCV generation. These findings delineate which of the many actin related events that shape the endosomal compartment are important for CCV formation.


Assuntos
Actinas/metabolismo , Coxiella burnetii/patogenicidade , Endossomos/microbiologia , Proteínas dos Microfilamentos/fisiologia , Febre Q/microbiologia , Vacúolos/microbiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/microbiologia , Humanos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Polimerização , Transporte Proteico , Febre Q/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
PLoS One ; 12(3): e0173528, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278296

RESUMO

Published data show that murine bone marrow-derived macrophages (BMDM) restrict growth of avirulent phase II, but not virulent phase I, Coxiella burnetii. Growth restriction of phase II bacteria is thought to result from potentiated recognition of pathogen-associated molecular patterns, which leads to production of inhibitory effector molecules. Past studies have used conditioned medium from L-929 murine fibroblasts as a source of macrophage-colony stimulating factor (M-CSF) to promote differentiation of bone marrow-derived myeloid precursors into macrophages. However, uncharacterized components of conditioned medium, such as variable amounts of type I interferons, can affect macrophage activation status and their permissiveness for infection. In the current study, we show that the C. burnetii Nine Mile phase II (NMII) strain grows robustly in primary macrophages from C57BL/6J mice when bone marrow cells are differentiated with recombinant murine M-CSF (rmM-CSF). Bacteria were readily internalized by BMDM, and replicated within degradative, LAMP1-positive vacuoles to achieve roughly 3 logs of growth over 6 days. Uninfected BMDM did not appreciably express CD38 or Egr2, markers of classically (M1) and alternatively (M2) activated macrophages, respectively, nor did infection change the lack of polarization. In accordance with an M0 phenotype, infected BMDM produced moderate amounts of TNF and nitric oxide. Similar NMII growth results were obtained using C57BL/6J myeloid progenitors immortalized with an estrogen-regulated Hoxb8 (ER-Hoxb8) oncogene. To demonstrate the utility of the ER-Hoxb8 system, myeloid progenitors from natural resistance-associated macrophage protein 1 (Nramp1) C57BL/6J knock-in mice were transduced with ER-Hoxb8, and macrophages were derived from immortalized progenitors using rmM-CSF and infected with NMII. No difference in growth was observed when compared to macrophages from wild type mice, indicating depletion of metal ions by the Nramp1 transporter does not negatively impact NMII growth. Results with NMII were recapitulated in primary macrophages where C57BL/6J Nramp1+ BMDM efficiently killed Salmonella enterica serovar Typhimurium. M-CSF differentiated murine macrophages from bone marrow and conditional ER-Hoxb8 myeloid progenitors will be useful ex vivo models for studying Coxiella-macrophage interactions.


Assuntos
Medula Óssea/microbiologia , Coxiella burnetii/crescimento & desenvolvimento , Macrófagos/microbiologia , Febre Q/microbiologia , Animais , Medula Óssea/metabolismo , Células Cultivadas , Fatores Estimuladores de Colônias/metabolismo , Coxiella burnetii/patogenicidade , Feminino , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Febre Q/metabolismo , Febre Q/patologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...