Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 39(5): 1165-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23404634

RESUMO

Sixteen monthly collections of adult male Gambusia holbrooki (eastern mosquitofish) were obtained from two lakes in central Florida, USA. Lake Woodruff and Lake Apopka are 36 miles apart, but differ in several environmental parameters. Compared with Lake Woodruff, Lake Apopka is warmer, more shallow in sampling areas (particularly during drought conditions; approximately 15-90 cm in Lake Apopka versus 60-120 cm in Lake Woodruff), more turbid, and more heavily contaminated with nutrients and industrial and agricultural chemicals. Here, we present detailed information on seasonal reproduction patterns in mosquitofish in their native range and compare patterns between fish from the two lakes. Male mosquitofish were reproductively active from spring through fall. Spermatogenesis, which is regulated in part by 11-ketotestosterone, ceased in October, and fish stored spermatozoa through the winter for immediate fertilization of offspring in the spring. Compared with Lake Woodruff, fish from Lake Apopka tended to be larger and have longer gonopodia and greater gonado- and hepato-somatic indices (GSI and HSI). High GSI in Apopka fish correlated with greater spermatid production, but fewer mature spermatozoa and either the same or lower sperm counts and sperm viability. Taken together, these observations suggest that differentiation of spermatids to spermatozoa is disrupted in Apopka fish, leading to reductions in fertility in some months. Delivery of sperm to females could also be affected in Apopka fish, which exhibit lower prevalence of efferent duct tissue in the testes during the summer.


Assuntos
Ciprinodontiformes/fisiologia , Lagos , Reprodução/fisiologia , Estações do Ano , Espermatogênese/fisiologia , Espermatozoides/citologia , Análise de Variância , Animais , Tamanho Corporal , Florida , Masculino , Tamanho do Órgão , Contagem de Espermatozoides/veterinária , Testículo/anatomia & histologia
2.
PLoS One ; 7(12): e52479, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300682

RESUMO

Environmental estrogens are ubiquitous in the environment and can cause detrimental effects on male reproduction. In fish, a multitude of effects from environmental estrogens have been observed including altered courting behavior and fertility, sex reversal, and gonadal histopathology. However, few studies in fish assess the impacts of estrogenic exposure on a physiological endpoint, such as reproduction, as well as the associated morphologic response and underlying global gene expression changes. This study assessed the implications of a 14 day sub-chronic exposure of ethinylestradiol (EE2; 1.0 or 10.0 µg/L EE2) on male medaka fertility, testicular histology and testicular gene expression. The findings demonstrate that a 14 day exposure to EE2 induced impaired male reproductive capacity and time- and dose-dependent alterations in testicular morphology and gene expression. The average fertilization rate/day following the exposure for control, 1.0 and 10.0 µg/L EE2 was 91.3% (±4.4), 62.8% (±8.3) and 28.8% (±5.8), respectively. The testicular morphologic alterations included increased germ cell apoptosis, decreased germinal epithelium and thickening of the interstitium. These changes were highly associated with testicular gene expression changes using a medaka-specific microarray. A pathway analysis of the differentially expressed genes emphasized genes and pathways associated with apoptosis, cell cycle and proliferation, collagen production/extracellular matrix organization, hormone signaling, male reproduction and protein ubiquitination among others. These findings highlight the importance of anchoring global gonadal gene expression changes with morphology and ultimately with tissue/organ function.


Assuntos
Etinilestradiol/toxicidade , Oryzias/anatomia & histologia , Oryzias/fisiologia , Reprodução/efeitos dos fármacos , Testículo/anatomia & histologia , Testículo/fisiologia , Transcriptoma/efeitos dos fármacos , Animais , Cruzamento , Estrogênios/toxicidade , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Oryzias/genética , Reprodução/genética , Especificidade da Espécie , Testículo/efeitos dos fármacos , Testículo/metabolismo , Fatores de Tempo
3.
Environ Int ; 35(6): 971-86, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19375165

RESUMO

Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.


Assuntos
Poluição Ambiental , Efeito Estufa , Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Humanos , Hipersensibilidade/epidemiologia , Compostos Orgânicos/toxicidade , Material Particulado/toxicidade , Praguicidas/toxicidade , Doença Cardiopulmonar/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...