Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(20): 31839-31852, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859000

RESUMO

Underwater turbulence presents a myriad of challenges for underwater optical systems through wavefront distortion and beam deflection. In this work, an underwater turbulence emulator is developed and thoroughly characterized to experimentally test the proposed underwater turbulence mitigation technique. This technique applies a modified HOBBIT system introduced in atmospheric turbulence to the relatively unknown underwater turbulence domain. By varying a beam's spatial position and relative phase gradient, a volume of turbulence is rapidly probed to determine the beam state for optimal propagation. This probe and control method is applied in multiple facets, including improved optical power transmission as well as supporting a 25-Gbps communication link through a dynamic environment.

2.
Opt Express ; 30(26): 47598-47611, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558685

RESUMO

Propagation of laser light is distorted in the presence of atmospheric turbulence. This poses an issue for sensing, free-space optical communications, and transmission of power. The presented system offers a novel solution to mitigate the effects of turbulence. By rapidly probing a turbulent volume by varying a beam's spatial and phase characteristics, the best transmission mode can be determined and updated in real time. Unlike a traditional tip-tilt system, this scheme is fully electronic, and has a scalable architecture to leverage multiple optical transmission paths simultaneously. This optical control system greatly improves power efficiency and successful recovery of data through environments with strong turbulence.

3.
Opt Express ; 30(23): 42564-42578, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366708

RESUMO

This paper presents a novel method for optical probing by generating optical fields with characteristics of wavelets. The optical wavelets form a basis of rotated asymmetric beams with scaled orbital angular momentum (OAM) and beam sizes. The probing method was used experimentally to measure the continuous wavelet transform of a turbulent propagation path, giving insight into the angular properties about a fixed radius. The wavelet transform of a three-dimensional turbulence distribution was measured; the measurements are much faster than the turbulence changes, allowing characterization of an instantaneous realization of turbulence over time. Results show highly localized regions of OAM in space through the turbulence and characteristics of the turbulence can be extracted from the wavelet transforms.

4.
Opt Express ; 30(19): 34765-34775, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242481

RESUMO

Orbital angular momentum (OAM) is a potential tool for remote sensing applications since amplitude/phase distributions can be decomposed into an OAM basis for analysis. We demonstrate the generation of a spatially asymmetric perfect vortex (APV) basis based on a pulsed 2D HOBBIT (Higher Order Bessel Beams Integrated in Time) system using two acousto-optic deflectors and optical coordinate transformation optics. Results are demonstrated for numerous radii and OAM charges as high as 20, with switching speeds greater than 400 kHz. The spatial APV basis is used to design different types of pulse trains for amplitude object pattern recognition and phase object wavefront sensing. Experimental results of sensing are provided for an amplitude object and a phase object to demonstrate the feasibility of the spatial APV on remote sensing tasks.

5.
Opt Lett ; 46(14): 3332-3335, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264206

RESUMO

This Letter demonstrates the nonlinear conversion of asymmetric perfect vortex (APV) beams with fractional orbital angular momentum (OAM). By controlling the amplitude and phase of the fundamental light field, we create APVs whose global OAM demonstrates a one-to-one correspondence of the charge numbers for fractional OAM values. The results show that the OAM of the second-harmonic generation fields follow the OAM conservation law. The nonlinear interactions of multiple OAM beams with the APVs are also investigated as they relate to the nonlinear frequency conversion and are shown to exhibit unique frequencies as a result of the Doppler frequency tagged OAM values.

6.
Opt Express ; 29(13): 19362-19372, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266046

RESUMO

We demonstrate a new method for a systematic, dynamic, high-speed, spatio-temporal control of femtosecond light filamentation in BK7 as a particular example of nonlinear medium. This method is based on using coherent conjugate asymmetric Bessel-Gaussian beams to control the far-field intensity distribution and in turn control the filamentation location. Such spatio-temporal control allows every femtosecond pulse to have a unique intensity distribution that results in the generation of structured filamentation patterns on demand. The switching speed of this technique is dependent on the rise time of the acousto-optic deflector, which can operate in the MHz range while having the ability to handle high peak power pulses that are needed for nonlinear interactions. The proposed and demonstrated spatio-temporal control of structured filaments can enable generation of large filament arrays, opto-mechanical manipulations of water droplets for fog clearing, as well as engineered radiofrequency plasma antennas.

7.
Sci Rep ; 11(1): 12284, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112858

RESUMO

Optical manipulation of colloidal systems is of high interest for both fundamental studies and practical applications. It has been shown that optically induced thermophoresis and nonlinear interactions can significantly affect the properties of dense colloidal media. However, macroscopic scale phenomena can also be generated at thermal equilibrium. Here, we demonstrate that steady-state variations of particle density can be created over large, three-dimensional regions by appropriately structured external optical fields. We prove analytically and experimentally that an optical vortex beam can dynamically control the spatial density of microscopic particles along the direction of its propagation. We show that these artificial steady-states can be generated at will and can be maintained indefinitely, which can be beneficial for applications such as path clearing and mass transportation.

8.
Opt Express ; 28(2): 924-935, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121812

RESUMO

Propagation of a continuous spectrum of orbital angular momentum (OAM) states through a realistic and controlled 3-dimensional turbulent condition has not been studied to date to the authors' knowledge. Using the Higher Order Bessel-gauss Beams Integrated in Time (HOBBIT) system and a 60 meter optical path Variable Turbulence Generator (VTG), we demonstrate that by changing the OAM in a continuous scan, a spectrum of OAMs provide an opportunity to take advantage of additional propagation channels within the aperture of the transmitter and optical path to the receiver. Experimental results are provided illustrating the HOBBIT system's ability to position the beam in space and time to exploit eigenchannels in the turbulent medium. This technique can be used to probe the turbulence at time scales much faster than the Greenwood frequency.

9.
Opt Express ; 28(2): 2536-2546, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121940

RESUMO

Nonlinear processes of laser beams carrying orbital angular momentum (OAM) offer a means to generate new wavelengths and to manipulate OAM charge numbers. We demonstrate the second-harmonic generation (SHG) of asymmetric Bessel-Gaussian (BG) beams carrying OAM of both integer and fractional charge numbers. Experimental results show a good one-to-one correspondence of the charge numbers and compliance with the OAM conservation law. The SHG conversion process and efficiency with different combined charge numbers are also discussed.

10.
Opt Express ; 27(4): 3920-3934, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876016

RESUMO

Beams with fast and continuously-tunable orbital angular momentum (OAM) have potential applications in classical and quantum optical communications, sensing, and in the study of beam propagation through turbulence. An acousto-optical deflector (AOD) is a sophisticated, well-studied device that continuously and rapidly tunes the deflection angle of an output beam. The log-polar HOBBIT setup can generate beams with OAM by wrapping elliptically shaped Gaussian beams with linear phase tilt to a ring. By combining the linear tilted output from the AOD with the OAM generation capabilities of the HOBBIT system, the generated OAM modes become continuously tunable at high speeds measured on the order of 400 kHz.

11.
Opt Express ; 26(23): 30969-30977, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469986

RESUMO

In this work, a 1550 nm fiber-to-free-space optical communication link is successfully demonstrated employing the superposition of two coherently coupled orbital angular momentum (CCOAM) states. Information is encoded onto both the amplitude and phase of the CCOAM beams and is mapped to a three-dimensional (3D) constellation space using quadrature amplitude modulation (QAM) equivalent architecture. The 3D QAM constellation is based on a higher-order Poincare sphere equivalent for OAM states, and multiple spherical constellations are demonstrated for 64- and 128-QAM, providing a 6X and 7X increase in spectral efficiency by fully exploiting the available 3D space. The experimental results are presented showing a bit error rate (BER) below the forward error correction (FEC) limit. Multiple experimental parameters which could contribute to constellation distortions are also discussed.

12.
Opt Express ; 26(9): 12180-12190, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716132

RESUMO

Information can be encoded onto transverse spatial light modes, providing a platform that can improve the spectral efficiency of a communications link. Switching speed between these spatial modes and detection methods limit the information capacity of such links. This work demonstrates high speed capabilities of such a link. Transverse modes are created and switched at high rates by coherently coupling twisted light modes using passive optical elements in line with electro-optical modulators. Here we demonstrate the encoding and detection of two coherently coupled modes encoded with 0.5 Gbaud quadrature amplitude modulated (16- and 32-QAM) signals, for a 4X and 5X increase in spectral efficiency by exploiting both phase and amplitude of the coherently coupled modes. The receiver is able to successfully recover the signal with error rates below the forward error correction limit using passive optical techniques. The data rate of the system used is only limited by hardware, but similar devices are available that are capable of multi-Gigahertz operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...