Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 33(5): e2888, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212209

RESUMO

Wildfires may facilitate climate tracking of forest species moving upslope or north in latitude. For subalpine tree species, for which higher elevation habitat is limited, accelerated replacement by lower elevation montane tree species following fire may hasten extinction risk. We used a dataset of postfire tree regeneration spanning a broad geographic range to ask whether the fire facilitated upslope movement of montane tree species at the montane-to-subalpine ecotone. We sampled tree seedling occurrence in 248 plots across a fire severity gradient (unburned to >90% basal area mortality) and spanning ~500 km of latitude in Mediterranean-type subalpine forest in California, USA. We used logistic regression to quantify differences in postfire regeneration between resident subalpine species and the seedling-only range (interpreted as climate-induced range extension) of montane species. We tested our assumption of increasing climatic suitability for montane species in subalpine forest using the predicted difference in habitat suitability at study plots between 1990 and 2030. We found that postfire regeneration of resident subalpine species was uncorrelated or weakly positively correlated with fire severity. Regeneration of montane species, however, was roughly four times greater in unburned relative to burned subalpine forest. Although our overall results contrast with theoretical predictions of disturbance-facilitated range shifts, we found opposing postfire regeneration responses for montane species with distinct regeneration niches. Recruitment of shade-tolerant red fir declined with fire severity and recruitment of shade-intolerant Jeffrey pine increased with fire severity. Predicted climatic suitability increased by 5% for red fir and 34% for Jeffrey pine. Differing postfire responses in newly climatically available habitats indicate that wildfire disturbance may only facilitate range extensions for species whose preferred regeneration conditions align with increased light and/or other postfire landscape characteristics.


Assuntos
Pinus , Incêndios Florestais , Ecossistema , Incêndios , Florestas , Plântula , Árvores
2.
Ecology ; 103(6): e3644, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35072946

RESUMO

Soils derived from ultramafic parent materials (hereafter serpentine) provide habitat for unique plant communities containing species with adaptations to the low nutrient levels, high magnesium : calcium ratios, and high metal content (Ni, Zn) that characterize serpentine. Plants on serpentine have long been studied in evolution and ecology, and plants adapted to serpentine contribute disproportionately to plant diversity in many parts of the world. In 2000-2003, serpentine plant communities were sampled at 107 locations representing the full range of occurrence of serpentine in California, USA, spanning large gradients in climate. In 2009-2010, plant communities were similarly sampled at 97 locations on nonserpentine soil, near to and paired with 97 of the serpentine sampling locations. (Some serpentine locations were revisited in 2009-2010 to assess the degree of change since 2000-2003, which was minimal.) At each serpentine or nonserpentine location, a north- and a south-facing 50 × 10 m plot were sampled. This design produced 97 "sites" each consisting of four "plots" (north-south exposure, serpentine-nonserpentine soil). All plots were initially visited three or more times over two years to record plant diversity and cover, and a subset were revisited in 2014 to examine community change after a drought. The original question guiding the study was how plant diversity is shaped by the spatially patchy nature of the serpentine habitat. Subsequently, we investigated how climate drives plant diversity at multiple scales (within locations, between locations on the same and different soil types, and across entire regions) and at different levels of organization (taxonomic, functional, and phylogenetic). There are no copyright restrictions and users should cite this data paper in publications that result from use of the data.


Assuntos
Plantas , Solo , Ecossistema , Filogenia , Microbiologia do Solo
3.
Ecology ; 102(11): e03514, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363692

RESUMO

High severity fire may promote or reduce plant understory diversity in forests. However, few empirical studies have tested long-standing theoretical predictions that productivity may help to explain observed variation in post-fire plant diversity. Support for the influence of productivity on disturbance-diversity relationships is found predominantly in experimental grasslands, while tests over large areas with natural disturbance and productivity gradients are few and have yielded inconsistent results. Here, we measured the response of post-fire understory plant diversity to natural gradients of fire severity and productivity in a large-scale observational study in California's subalpine forests. We found that plant species richness increased with increasing fire severity and that this trend was stronger at high productivity. We used plant traits to investigate whether release from competition might contribute to increasing diversity and found that short-lived and far-dispersing species benefited more from high severity fire than their long-lived and near-dispersing counterparts. For far-dispersing species only, the benefit from high severity fire was stronger in high productivity plots where unburned species richness was lowest. Our results support theoretical connections between fire severity, productivity and plant communities that are key to predicting the consequences of increasing fire severity and frequency on diversity in the coming decades.


Assuntos
Biodiversidade , Incêndios , Ecossistema , Florestas , Plantas
5.
Ecol Appl ; 30(1): e02016, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596981

RESUMO

Exotic invasive plants threaten ecosystem integrity, and their success depends on a combination of abiotic factors, disturbances, and interactions with existing communities. In dryland ecosystems, soil biocrusts (communities of lichens, bryophytes, and microorganisms) can limit favorable microsites needed for invasive species establishment, but the relative importance of biocrusts for landscape-scale invasion patterns remains poorly understood. We examine effects of livestock grazing in habitats at high risk for invasion to test the hypothesis that disturbance indirectly favors exotic annual grasses by reducing biocrust cover. We present some of the first evidence that biocrusts increase site resistance to invasion at a landscape scale and mediate the effects of disturbance. Biocrust species richness, which is reduced by livestock grazing, also appears to promote native perennial grasses. Short mosses, as a functional group, appear to be particularly valuable for preventing invasion by exotic annual grasses. Our study suggests that maintaining biocrust communities with high cover, species richness, and cover of short mosses can increase resistance to invasion. These results highlight the potential of soil surface communities to mediate invasion dynamics and suggest promising avenues for restoration in dryland ecosystems.


Assuntos
Briófitas , Líquens , Ecossistema , Poaceae , Solo
6.
Proc Natl Acad Sci U S A ; 116(40): 19989-19994, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527249

RESUMO

While climate change has already profoundly influenced biodiversity through local extinctions, range shifts, and altered interactions, its effects on the evolutionary history contained within sets of coexisting species-or phylogenetic community diversity-have yet to be documented. Phylogenetic community diversity may be a proxy for the diversity of functional strategies that can help sustain ecological systems in the face of disturbances. Under climatic warming, phylogenetic diversity may be especially vulnerable to decline in plant communities in warm, water-limited regions, as intensified water stress eliminates drought-intolerant species that may be relicts of past wetter climates and may be distantly related to coexisting species. Here, we document a 19-y decline of phylogenetic diversity in a grassland community as moisture became less abundant and predictable at a critical time of the year. This decline was strongest in native forbs, particularly those with high specific leaf area, a trait indicating drought sensitivity. This decline occurred at the small spatial scale where species interact, but the larger regional community has so far been buffered against loss of phylogenetic diversity by its high levels of physical and biotic heterogeneity.


Assuntos
Biodiversidade , Mudança Climática , Pradaria , Filogenia , Plantas/classificação , California , Secas , Fenótipo , Análise de Regressão , Estações do Ano , Água
7.
PeerJ ; 6: e5699, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345168

RESUMO

Branches and boles of trees in wet forests are often carpeted with lichens and bryophytes capable of providing periodically saturated habitat suitable for microfauna, animals that include tardigrades, rotifers, nematodes, mites, and springtails. Although resident microfauna likely exhibit habitat preferences structured by fine-scale environmental factors, previous studies rarely report associations between microfaunal communities and habitat type (e.g., communities that develop in lichens vs. bryophytes). Microfaunal communities were examined across three types of epiphyte and three sampling heights to capture gradients of microenvironment. Tardigrades, rotifers, and nematodes were significantly more abundant in bryophytes than fruticose lichen or foliose lichen. Eight tardigrade species and four tardigrade taxa were found, representing two classes, three orders, six families, and eight genera. Tardigrade community composition was significantly different between bryophytes, foliose lichen, fruticose lichen, and sampling heights. We show that microenvironmental factors including epiphyte type and sampling height shape microfaunal communities and may mirror the environmental preferences of their epiphyte hosts.

8.
Glob Chang Biol ; 24(10): 4909-4918, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30091212

RESUMO

Many global ecosystems have undergone shifts in fire regimes in recent decades, such as changes in fire size, frequency, and/or severity. Recent research shows that increases in fire size, frequency, and severity can lead to long-persisting deforestation, but the consequences of shifting fire regimes for biodiversity of other vegetative organisms (such as understory plants, fungi, and lichens) remain poorly understood. Understanding lichen responses to wildfire is particularly important because lichens play crucial roles in nutrient cycling and supporting wildlife in many ecosystems. Lichen responses to fire have been little studied, and most previous research has been limited to small geographic areas (e.g. studies of a single fire), making it difficult to establish generalizable patterns. To investigate long-term effects of fire severity on lichen communities, we sampled epiphytic lichen communities in 104 study plots across California's greater Sierra Nevada region in areas that burned in five wildfires, ranging from 4 to 16 years prior to sampling. The conifer forest ecosystems we studied have undergone a notable increase in fire severity in recent decades, and we sample across the full gradient of fire severity to infer how shifting fire regimes may influence landscape-level biodiversity. We find that low-severity fire has little to no effect on lichen communities. Areas that burned at moderate and high severities, however, have significantly and progressively lower lichen richness and abundance. Importantly, we observe very little postfire lichen recolonization on burned substrates even more than 15 years after fire. Our multivariate model suggests that the hotter, drier microclimates that occur after fire removes forest canopies may prevent lichen reestablishment, meaning that lichens are not likely to recolonize until mature trees regenerate. These findings suggest that altered fire regimes may cause broad and long-persisting landscape-scale biodiversity losses that could ultimately impact multiple trophic levels.


Assuntos
Biodiversidade , Incêndios , Florestas , Líquens/classificação , California , Conservação dos Recursos Naturais , Monitoramento Ambiental , Líquens/crescimento & desenvolvimento , Modelos Teóricos , Traqueófitas/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
9.
Ecology ; 96(12): 3323-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26909437

RESUMO

Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural habitats become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. We asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, USA, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure, defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index), had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.


Assuntos
Pradaria , Plantas/classificação , Animais , Incêndios , Fenômenos Geológicos , Missouri , Desenvolvimento Vegetal , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...